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Abstract—This work presents a relatively new approach 

designed for modelling reacting flows in porous media by using 

conditional expectations. Similar methods, aimed at obtaining, 

closing and using conditional expectations in reacting fluid flows, 

were previously developed for and successfully used in turbulent 

combustion (e.g. conditional moment closure or CMC) are now 

generalised and adapted to perform simulations of reacting 

flows in porous media. Different versions of the porous models 

PCMC (porous CMC) variations of PDCMC (distance 

conditioned moment closure) have been proposed and are now 

summarised in this work. These approaches utilise 

single-conditioned expectations and the closure of the equations 

is obtained by using diffusion approximations conventional in 

CMC.  

Fractal properties of a porous medium can be used to evaluate 

the coefficients of the conditional equations. A new approach for 

investigating transport phenomena in irregularly-connected 

pore networks and obtaining corresponding transport 

coefficients has also been suggested. This approach combines a 

generalised effective medium approximation with a macroscopic 

continuum model and allows us to explicitly obtain analytical 

expressions for the transport coefficients for both unconditional 

and conditional models.  

As demonstrated, the proposed general approach is capable 

of emulating various regimes of reactive transport in porous 

media, while permitting accurate reproduction of the 

experimental results. 

 
Index Terms—Conditional moment closure, fractality, 

generalised effective medium approximation, porous media, 

reacting flows.  

 

I. INTRODUCTION 

Conventional models based on unconditional averaging of 

the flow properties over varying pore configuration and sizes 

are likely to suffer from being insufficiently detailed to 

represent the whole complexity of the flow. It is common that, 

while spatial transport occurs mainly in the largest pores, 

heterogeneous reactions take place mainly in the smallest 

pores accessible only through a cascade of pores of different 
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sizes. Distinguishing a limited number of different pore sizes 

(e.g. fractures and pores) may improve accuracy but is also 

likely to be insufficient for accurate treatment of reacting 

flows in porous media. Conditional methods allow us to 

formulate consistent transport equations while taking into 

account the whole spectrum of possible pore sizes.  

The Conditional Moment Closure (CMC) methodology 

has been proposed in the earlier nineties [1], [2] for more 

accurate (compared to previously used, unconditionally 

averaged models) but still computationally affordable (in 

contrast to direct numerical simulations or DNS) modelling of 

turbulent reacting flows. The model based on conditional 

averaging contains much more detail than unconditional 

models. At the same time, the conditional approach is still 

much more computationally affordable than DNS. 

Conditional averaging, however, brought a new series of 

questions related to model consistency, preservation of 

conservation properties, accurate specification of the model 

coefficients, etc. These questions were mostly resolved over 

time and the results were presented in the comprehensive 

review of earlier studies on conditional methods [3].  

The CMC methodology has been successfully applied to a 

variety of problems in turbulent reacting flows. This success 

encouraged the present authors to apply CMC methodology 

for modelling of reactive flows through porous media.  

Both turbulent flows and those in porous media involve 

multi-cascade processes. These processes, however, 

represent physically different phenomena that should be 

reflected in conditional modelling. In turbulent non-premixed 

combustion, fluctuations of the reactive species 

concentrations correlate with fluctuations of the mixture 

fraction. The latter can be described statistically with a 

presumed probability density function (PDF) of the mixture 

fraction. In porous media, the laminar variations in the gas 

species concentrations correlate with the diffusive distance to 

the reactive surface. This distance can also be described 

statistically with a presumed PDF.  

Transport in complex porous media, such as coal, involves 

cascade processes of diffusion through pores of different sizes 

(micro-, meso- and macro-pores), while convective transport 

predominantly occurs through the largest pores and fractures. 

Heterogeneous gas-solid reactions bring additional 

complexity to this process. In coal, which exhibits fractal 

properties [4], the reactive surface is predominantly located in 

the smallest pores and variations in gas species concentrations 

become of prime importance. The unconditional approach [5], 

[6], which is based on unconditional averages, is unable to 

take these variations into account. 

As discussed above, an additional variable that describes 

the variations in species concentrations needs to be 
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introduced for accurate treatment of heterogeneous reactions. 

Two such variables have been proposed so far: the diffusive 

tracer and the distance tracer. Porous Conditional Moment 

Closure (PCMC) model for the diffusive tracer is presented in 

[7] and properties of such tracers in fractal porous media are 

comparatively analysed in [8]. Treatment of the case where 

the pore structure substantially changes due to heterogeneous 

reactions is given in [9]. The model for distance tracer, which 

is called Porous Distance Conditioned Moment Closure or 

PDCMC, is formulated in [10], where the interplay between 

interface and network fractalities of the porous medium in 

question is also analysed. The coefficients of the transport 

equations still need to be approximated. This problem has 

been solved [11] for arbitrary random networks of pores by 

combining a generalisation of the effective medium 

approximation [12] with a continuum approximation 

governed by equations similar to Fokker-Planck equations. 

This novel approach allows derivation of explicit analytical 

expressions for the transport coefficients.  

Conditional methods become most effective when volume 

averaging, which is conventional in porous media, is replaced 

by more mathematically convenient ensemble averaging. The 

ensemble-spatial averaging theorem, which is the ensemble 

analogue of the spatial averaging theorem [6], has been 

proven in [8]. This enables the use of ensemble averaging, 

both conditional and unconditional, in porous media 

applications.  

This paper presents a spectrum of models that can be 

effectively used to accurately model a wide range of reacting 

flows through porous media. We summarise theoretical 

developments of the previous studies and present some results 

of calculations. Note that the presented approach is general 

and independent of the sub-models used to describe diffusive 

characteristics of a porous medium or kinetics of 

heterogeneous and homogeneous reactions. In fact, one can 

use virtually any sub-models, which are dictated by real 

conditions or regarded as appropriate from separate 

considerations. The approach is applicable to a variety of 

reacting flows through porous media including, for example, 

methane replacement by CO2 in coal. This opens the 

possibility to apply the successful CMC methodology for 

modelling and optimisation of such technologies as 

geological CO2 sequestration and enhanced coal bed methane 

recovery, which are of particular importance in the modern 

carbon-constrained world. 

 

II. MODELLING OF REACTIVE TRANSPORT IN POROUS MEDIA 

A porous medium is conventionally characterised by two 

phases: the gaseous β-phase and the solid matrix or σ-phase. 

The reactive flow within the β-phase is governed by the 

continuity 
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and, for each gaseous species “i”`, by the species transport 

equations 
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Here, ρ and v are the gas density and velocity, respectively; Yi 

are the mass fractions of the gaseous species; while Wi are the 

species production rates in homogeneous (β-phase) reactions. 

To simplify the formulae, the diffusion coefficient D is 

assumed to be the same for all gaseous species. Note that 

heterogeneous reactions, which occur on the reactive surface 

or β/σ-interface, are treated with the help of boundary 

conditions as described below. 

Traditionally [5], [6], the above equations are averaged 

using intrinsic (over the β-phase) or superficial (over the 

entire porous medium) averages. The averaging is performed 

by taking the convolution integral with a bell-shaped 

weighting function. The characteristic length scale of this 

function is much larger than the characteristic pore size but 

much smaller than the length scale of flow parameter 

variations. In terms of averages, the momentum balance is 

given by the Darcy law [13]. 

Since the characteristic length scale of the weighting 

function is much larger than the size of pores, models based 

on conventional averaging disregard the variations in species 

concentrations within a pore and variations between pores of 

different sizes. This poses no significant problems if the 

heterogeneous reaction is in the kinetics controlled regime, 

which is characterised by small Damkohler numbers (Da << 

1). In this regime, the gaseous reactant is transported to the 

reactive surface much faster than it is consumed on the surface. 

As a result, the concentration of the gaseous reactant does not 

vary significantly within a pore as schematically presented in 

Fig. 1 by a dashed line. 

 

 
Fig. 1. Schematic view of the variations in a gaseous reactant concentration 

within a pore. 

 

For large Damkohler numbers (Da >> 1), however, all the 

gaseous reactant that arrives at the reactive surface reacts 

almost instantaneously with the surface. In this case, the 

reactant concentration varies significantly within a pore as 

shown in Fig. 1 by a solid line. In the vicinity of the surface, 

the concentration is approximately zero and rapidly increases 

towards the centre of a pore. The conventional approach, 

which is based on unconditional averages, is independent of 

Da and does not consider such variations. As a result, the 

conventional approach gives unacceptable predictions for the 

diffusion controlled regime and poor predictions for the 

intermediate regimes (Da ≈1) of the heterogeneous reaction 

(see Fig. 3 in [7]).  

The regime of the heterogeneous reaction is not known a 

priori. We note, however, that the diffusion controlled and 

intermediate regimes are generally more likely than kinetics 

International Journal of Chemical Engineering and Applications, Vol. 3, No. 6, December 2012

472



controlled regime in high temperature processes. Therefore, 

variations in species concentrations with pore size need to be 

considered for accurate modelling of such processes. In the 

CMC paradigm, this is achieved by introducing an additional 

variable which parameterises the distance to the reactive 

surface (which also serves as a proxy for pore size), and 

solving equations based on averages conditioned on this 

variable. Two variables have been used for conditioning: the 

diffusive tracer and the distance tracer. These variables and 

the corresponding models are considered in the next sections. 

In this study, we present only major equations of these models 

in their simplified form, while referring a reader to the 

previous papers [7], [8], and [10] for general formulations and 

more details. Unlike in the previous publications, we give 

only the conservative form of the conditional equations (but 

not the convective form).  

 

III. DIFFUSIVE TRACER (PCMC) 

The diffusive tracer Z is introduced in [7] as follows. The 

tracer Z is assumed to be produced with the constant rate WZ 

in the β-phase. It is transported in the same way as gaseous 

species. That is, Z satisfies the conventional species transport 

equation 
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Similarity of (2) and (3) (with the same diffusion 

coefficient D) ensures that Z resembles transport of gaseous 

species, The value of the constant source term WZ can be 

arbitrarily selected without loss of generality. As 

demonstrated in [8], the diffusive tracer can be interpreted as 

a distance from a given point in the β-phase to the reactive 

surface measured by the average time required for a random 

walk process to reach the surface. 

The tracer is instantaneously consumed at the reactive 

surface, so that Z is positive in the β-phase and monotonically 

decreases to zero at the reactive surface. In this way, Z 

parameterises the distance from the reactive surface and the 

condition Z=0 defines the surface (in this case we say that 

conditioning on Z resolves the phase interface). Furthermore, 

the instantaneous consumption of Z on the surface emulates 

the diffusion controlled regime of heterogeneous reactions.  

The equations of the PCMC model are expressed in terms 

of conditional Favre averages. For an arbitrary function F, 

the conditional Favre average ( )zF  is defined as 

( ) | / |zF F Z z Z z    . The angular brackets 

conventionally denote superficial averages and z is the 

variable in Z-dimension, while β(x) is the indicator of the 

β-phase so that β = 1 in the β-phase and β = 0 elsewhere. If Z 

resolves the interface, the indicator β does not affect 

conditional averaging and can be omitted there.  

Averaging (1) and (2) with the help of the technique 

described in [3], while omitting the terms which are 

conventionally neglected in CMC approach [7], and 

conventionally denoting 
zii YQ )( , we arrive at the 

following equations of the PCMC model: 

 
2

2

( )

( )
0

z Z

z z Z

Z z Z z z Z

P
P

t

W P N P

z z




 


 



 
  

 

v
.              (4) 

 

ziZz
iZzZ

i
Zzzi

Zzz

iZzz
iZz

WP
z

QPW

z

Q
PNQ

z

PN

z

QP
t

QP

)(

)(
)(

)(













































v

    (5) 

where PZ is the PDF of Z and 
zz ZDN ))(()( 2  is the 

conditional dissipation of the tracer. In this work we give the 

conservative form of the conditional equation (5), while the 

convective form of the PCMC equation [7] can be easily 

obtained with the use of the PDF equation (4).  

If the reactive surface is not resolved by the conditioning 

variable, the source terms Wi involve the effect of both 

volumetric and surface reactions. If the surface is resolved by 

Z=0 (or by a similar condition), then the surface reactions are 

treated separately by boundary conditions for the 

Z-dimension [10]. This case of the phase interface resolved by 

Z=0 is specifically considered this section. The boundary 

conditions are obtained using the ensemble averaging [7], 

which generalises the spatial averaging theorem [14]. 

Following [7], we assume that the reactive surface is 

quasi-stationary and the Z-field is developed. Then, the 

boundary conditions for Z→0 read 
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Here, zA is the interface surface area per unit volume, 

 1 2( , ,...)i

i
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is the mass production rate per unit area at the interface 

surface and Ψi are the mass rates of the heterogeneous 

reactions per unit surface area. While the flow is considered 

only in the β-phase, the PDF PZ and all other PDFs in this 

work are understood as superficial and normalised by  

0
( )ZP z dz 




                                 (9) 

where β is the indicator function of the β-phase and the 

average <β> is the porosity of the medium. Intrinsic PDFs, 

which are not used here, are normalised to unity and these 

PDFs need to be multiplied by porosity in the equations. Note 

also that left part in (7) represents mass fluxes of the gaseous 

reactants to the reactive surface. 

Thus, (7) takes into account the heterogeneous reactions 

and provides one of the major advances of CMC models over 

the conventional (unconditional) approach. In (7), the surface 
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reaction rates Ψi are functions of Qi, which are linked to the 

distance to the reactive surface via conditioning on Z. In 

contrast, only unconditional averages, which are independent 

of that distance, are available in conventional models. With 

this advantage, the PCMC model demonstrated a good match 

with the results of DNS performed for a test case of carbon 

oxidation [7], specifically for the diffusion controlled and 

intermediate regimes of the surface reaction.  

Note that consistent modelling of both PZ and 
zN )(  is 

required to close (4) and (5). Generally, PZ is not known and 

needs to be reasonably approximated. In the test case 

considered in [7], such an approximation was obtained by 

matching the DNS results. This approach, however, is 

computationally expensive and requires additional modelling 

of the structure of a porous medium, which can be an 

extremely difficult problem by itself. A more practical 

method for a medium with fractal properties is suggested in 

[9]. Such a medium is characterised by geometrical similarity 

of pore structures at different scales (micro-, meso- and 

macro-pores) and by the predominant location of the reactive 

surface within the smallest pores. As demonstrated in [8], PZ 

asymptotically follows the power law for such media 

( )ZP c z a   . See [8] and [9] for details.  

 

IV. DISTANCE TRACER (PDCMC) 

Alternatively, the distance to the phase interface can be 

parameterised by the distance tracer R, which is linked to the 

stochastic geometry of a porous medium and is defined as the 

minimal distance from a point within a pore to the reactive 

surface [8]. The sample variable in R-dimension is r. The 

distance tracer seems to be a more natural parameterisation 

and averages conditioned on this tracer do not depend on the 

flow. The PDCMC model equations, however, involve the 

additional velocity component u corresponding to the 

R-direction and other additional terms. 

The PDCMC model equations are formulated in terms of 

conditional averages [10]. For an arbitrary function F we 

define rRFF
r

 |  and 
rrr FF  /)(  where 

rRr  | is conditional average of the density. As 

demonstrated in [8], PR asymptotically follows the power-law 

PR ~ 1/r
α
. Similarly to the diffusive tracer, R is positive in the 

β-phase and the condition R=0 defines the reactive surface.  

In terms of the averages conditioned on R, (1) reads 
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A superficial PDF, normalised as in equation (9), is implied 

here. Using an over-tilde to distinguish the conditioning on R 

from that on Z and denoting 
rii YQ )(

~
 , (2) takes the form 
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The boundary conditions on the reactive surface (R=0) are 

given by 


 Mu rir )( ,                                   (12) 
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The PDCMC model was applied to simulate the process of 

CH4 replacement by CO2 in a coal sample [10] and the results 

of calculations were compared with the experimental data 

previously obtained at the University of Queensland. In this 

experiment, CO2 was supplied at the pressure of 500 kPa on 

one side of the coal sample initially filled in with methane, 

while the mixture of CH4 and CO2 was drained from the other 

side at the pressure of 300 kPa. The methane fraction in the 

outflow was recoded as a function of time. The parameters of 

the model were selected to match the characteristics of the 

coal sample and the conditions of the experiment reported in 

[16]. The excess fractal dimension α =0.71 was taken from [4]. 

The experimental data and the computational results are 

presented in the Fig. 2.  

 

 
Fig. 2. Diffusive exchange and wave-like regimes. 

 

As shown in this figure, the experimental results follow a 

power-law decay in CH4 concentration with time. Clearly, 

such a behaviour cannot be explained only by kinetics 

considerations, which imply an exponential decay. Thus, the 

observed power-law decay indicates that the 

adsorption/desorption reactions are not kinetically limited, 

which confirms the results of the previous study [17]. The 

PDCMC model consistently treats diffusion of methane from 

smaller to larger pores and a counterflow of CO2 induced by 

the pressure gradient coupled with the adsorption/desorption 

reactions. As a result, an excellent asymptotic match of the 

experimental data is achieved (see Fig. 2). The initial 

disagreement is believed to be due to a relatively large dead 

volume, which is initially filled in with CH4, between the coal 

sample and the sensor. This volume causes an apparent delay 

(not more than 100 seconds for the multi-hour experiment) in 

the breakthrough of CO2. Its influence, however, vanishes 

with time and does not affect the long-term asymptote. It is 

important to note that the PDCMC model correctly predicts 

an exponential decay for kinetics controlled reactions. 

Numerical experiments with the PDCMC model 

demonstrate that, depending on the values of the parameters 

characterising the gas flow and the medium, methane 
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recovery enhanced by CO2 injection may occur in two 

different major regimes. These are the ``diffusive exchange'' 

and the ``wave-like'' regimes. In the diffusive exchange 

regime, which has been observed in the experiments and 

calculations presented here, is shown in Fig. 2. In this regime, 

CO2 quickly (within few seconds) breaks though the largest 

pores, while CH4 initially remains stagnant mainly in the 

smallest pores. Then, CH4 diffuses from the smallest pore into 

the stream over a substantial period of time. After the initial 

drop, the fraction of CH4 in the outflow gradually decreases in 

time. In the wave-like regime, CO2 does not break though. 

Instead, the interface between CO2 and CH4 stretches from 

smallest to largest pores, while forming a “wave” front that 

propagates downstream. The fraction of CH4 in the outflow 

drops rapidly, when the front reaches the downstream end of 

the coal sample. Comparison of the diffusive exchange and 

the wave-like regimes is shown in Fig. 3. The ability of the 

PDCMC model to simulate both regimes provides a potential 

for optimising the gas injection parameters. Selecting the 

optimal gas injection regime is the major task in a successful 

enhanced coal bed methane recovery. 

 
Fig. 3. Diffusive exchange and wave-like regimes. 

 

V. CONDITIONING ON PORE SIZES 

Two types of fractality – interface fractality and network 

fractality – should to be considered [8]. It has been 

demonstrated that, depending on the parameters of the porous 

medium, either interface or network fractality dominates (see 

Section 10 in [8] for more details). In the latter case, the 

distance tracer is also a proxy for pore sizes [9] (as explained 

in [8] the diffusive tracer can also serve as the indicator of 

pore sizes but this is not used here). Indeed distance R cannot 

be found in a pore much smaller than R while the probability 

of being located in a pore much larger than R is low since 

smaller pores contain most of the interface surface. Hence as 

deduced in [9], (11) can be interpreted as equations 

conditioned on the pore size. There is however an adjustment 

to make since r=0 no longer resolves the phase interface. In 

principle, conditional methods permit conditioning on two or 

more variables (e.g. on both distance to the interface and pore 

size) but this seems unnecessary at this stage of development. 

If R is interpreted as the pore size, equation (11) corresponds 

to neglecting reaction on the phase interface in all but the 

smallest pores. This can be corrected by introducing 

distributed heterogeneous reaction source terms into the 

conditional equations [9]. Using hat to denote conditioning on 

the pore size, the continuity and species transport equations 

take the form  
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where r̂A  is interface area per volume of pore of size r̂ . 

Although these equations are formulated only for the β-phase, 

the PDF is understood as superficial and is normalised similar 

to (9).  

Due to the additional velocity component u, the momentum 

balance in the PDCMC model is given by the following 

generalisation of the Darcy law for conditional averages. 
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where μ is the dynamic viscosity of the gas, κx is the 

permeability of the medium in the physical space and rp ˆ is 

the conditional pressure rRppr
ˆˆ|ˆ  , while the 

parameter r̂  plays the role of the permeability coefficient in 

the r-direction. Methods for evaluation of the diffusion 

coefficients in physical space Dx and in the pore size space 

rDˆ  are discussed in section VI. 

These equations are conceptually similar to (10) and (11), 

where conditioning is performed on the distance to the 

reactive surface. However, heterogeneous reactions are 

treated differently in these two cases. In the case of 

conditioning on the distance to the reactive surface, 

heterogeneous reactions are taken into account by boundary 

conditions (12) and (13), which are formulated for the 

resolved phase interface. Such an approach is not applicable 

to (14) and (15), since the phase interface is not explicitly 

resolved, when conditioning is performed on the pore size. In 

this case, the heterogeneous reactions are taken into account 

by the additional source terms, which depend on the pore size 

r̂ . Generally, one can expect that gas-solid reactions are 

more intense in smaller pores. Note that the equations 

conditioned on the pore size (14) and (15) can be used for 

various porous media, including those with complex fractal 

properties. Note that the conditional equations considered 

here can be generalised for the free molecular regime [10].  

 

VI. TRANSPORT COEFFICIENTS  

As demonstrated [7], [10], the conditional models have 

proven to be successful in modelling a variety of reactive 

flows through porous media. However, the transport 

coefficients in these models were treated as adjustable 

parameters. Their values were mainly selected by fitting the 

available experimental data. In reality, the transport 
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coefficients are determined by the properties of the porous 

media in question and need to be modelled in a physically 

realistic fashion. This problem has been recently addressed by 

a novel approach [11], which generalises and combines the 

effective medium approximation with a macroscopic 

continuum model that is expressed by equations similar to the 

Fokker-Planck equation.  

The suggested approach is general and has the capacity to 

deal with various kinds of irregularity in porous media 

without the need for excessive detail or computational effort. 

Unlike previous effective medium approaches, the 

generalized effective medium approximation permits 

variation in coordination numbers, anisotropy, and 

macroscopic fluctuations. This is more representative of real 

porous media, which commonly exhibit such irregularities. 

As demonstrated [11], the new model is able to account for 

effects related to the connectedness of the medium, most 

notably the existence of a percolation threshold. This results 

in much higher accuracy of the model for low coordination 

numbers, as is clearly illustrated in Fig.4. Moreover, the 

generalised effective medium technique can handle some 

cases where other approaches, such as a simple 

Fokker-Planck model, would give highly inaccurate or even 

infinite results [11].  

 
Fig. 4. Comparison of normalized diffusion coefficients between the new 

model, a simple Fokker-Planck model, and direct simulations. 

 

VII. CONCLUSION 

The CMC methodology, which has been successfully used 

to model turbulent reactive flows, is extended to model 

reactive flows through porous media, including combustion 

of porous materials. Two conditional variables: the diffusive 

tracer and the distance tracer are introduced. Conditioning on 

these tracers takes into account variations in gas species 

concentrations and allow for a more accurate (compared to 

unconditional models) and consistent treatment of 

heterogeneous reactions. Various variants of the conditional 

model, which consistently simulate complex multi-cascade 

processes of reactive transport in complex porous media, are 

formulated for these tracers in terms of single-conditioned 

expectations. 

Depending on the selection of the conditional variable, two 

versions of the conditional models are considered (i.e. PCMC 

and PDCMC). The models can be formulated either with the 

phase interface resolved by the conditioning variable or 

without the resolving interface (for example, conditioning on 

the pore size). Different versions of conditional models have 

their plusses and minuses and are intended to be used flexibly 

depending on the physics of the problems under 

consideration.  

The PCMC model, in contrast to unconditional models, 

provides a good match to the results of DNS for the carbon 

oxidation test case, specifically for the diffusion controlled 

and intermediate regimes of the surface reaction. The 

PDCMC model, being applied for modelling of methane 

replacement by CO2 in a coal sample, demonstrates excellent 

asymptotic agreement with the experimental data, which 

indicate a power-law decay in CH4 concentration. The 

PDCMC model is also able to simulate various regimes of 

methane replacement by CO2 in coal. This ability makes the 

model specifically useful for optimising the parameters of gas 

injection in such technologies as enhanced coal bed methane 

recovery and geological CO2 sequestration. 

A novel approach, enabling the derivation of analytical 

expressions for transport coefficients of irregular networks of 

pores, is suggested. This approach unifies two principal 

existing methods (the effective medium approximation and 

the Fokker-Planck equation) into a single general and 

powerful methodology.  
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