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I. INTRODUCTION 
DNA-damage is induced by ionizing radiation, genotoxic 

chemicals or collapsed replication forks, and when DNA was 
damaged or the responses of cells were failure, the mutation 
associated with the breast or ovarian cancer of genes may 
occur. To prevent and repair the DNA-damage, mammalian 
cells will control and stabilize the genome by cell cycle 
checkpoint. The checkpoint pathway consists of several 
kinases, such as ataxia telangiectasia mutated protein (ATM 
[1,] [2]), ataxia telangiectasia and Rad3-related protein (ATR 
[1], [2]), Checkpoint kinase 1 (Chk1 [3], [4]), and 
Checkpoint kinase 2 (Chk2 [5]-[8]).  

ATM and ATR are upstream kinases passing messages to 
downstream kinases and phosphorylating several proteins 
that initiate activation of the DNA-damage checkpoint. 
Moreover, ATM is a primarily pathway to activate p53 
(protein 53 [9]) by Chk2, and ATR may influence the 
phosphorylation of Chk1. Both Chk1 and Chk2 are key 
 

 

components in DNA-damage; however their cellular 
activities are different. Chk1 is involved in S and G2 phases 
of the cell cycle with ATR pathway. By contrast, Chk2 is 
activated in all phases through ATM-dependent pathway and 
plays an important role in response to DNA double-strand 
breaks and related lesions. Furthermore, Chk1 is an unstable 
protein and lacks the forkhead-associated domain (FHA) 
which was involved in several processes that protect against 
cancer and can be found in Chk2. Therefore, we will 
concentrate on Chk2 in this study. 

Recently, some studies identified the inhibitors of Chk2 
[10]-[14], and they also showed the crystal structures of 
Chk2 complex. They are selective, reversible, and 
ATP-competitive Chk2 inhibitors demonstrated that they 
effectively restrain the radiation-induced phosphorylation of 
Chk2. In addition, several selective Chk2 inhibitors have also 
been was identified and the researches indicated that they are 
potent and selective inhibitors of Chk2 with 
chemotherapeutic and radio-sensitization potential. On 
structure-based drug design, several developments of Chk2 
were published. 

Quantitative structure-activity relationship model (QSAR 
model) is a regression or classification model, and is an 
important technique in the rational drug design. It is used to 
correlate the structure properties of compounds with their 
biological activities. The method to predict the quality by 
QSAR was improved by considering the three-dimensional 
structure QSAR (3D-QSAR) [15]-[20] of targeted inhibitor. 
Therefore, the compound structure can be directly optimized 
in the 3D space. The comparative molecular field analyses 
(CoMFA) [21]-[26] and the comparative molecular similarity 
indices analyses (CoMSIA) [22]-[28] for Chk2 inhibitors 
were performed by ligand-based and receptor-guided 
alignment. They used the co-crystal structure from protein 
data bank (PDB code: 2CN8) [7], and then they identified 
new plausible binding modes used as template for 3D-QSAR 
[22]. There is another research of Chk2 studied in 
QSAR/QSPR [29] providing structures that will improve 
reducing the side effects of Chk2 inhibitors. 

Pharmacophore [16]-[20], [30]-[32] is a set of structural 
features responsible for its biological activity of a molecule. 
It allowed compounds with diverse structures to find the 
common chemical features by ligand pharmacophore 
mapping, and that is different from CoMFA and CoMSIA. 
Thus, pharmacophore can explain how diverse ligands bind 
to a receptor site by these features, and visualize the feature 
of potential chemical interactions between ligands and 
receptors. Moreover, pharmacophore can easily and quickly 
identify candidate inhibitors for a target protein based on 3D 
query. Therefore, in this study, the purpose is to use 
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Abstract—DNA-damage is induced by ionizing radiation, 
genotoxic chemicals or collapsed replication forks. To prevent 
and repair the DNA-damage, mammalian cells will control and 
stabilize the genome by cell cycle checkpoint. Checkpoint kinase 
2 (Chk2) is one of the important kinases that has a great effect 
on DNA-damage and plays an important role in response to 
DNA double-strand breaks and related lesions. Hence, in this 
study, we will concentrate on Chk2 and the purpose is to build 
the pharmacophore hypotheses (PhModels) by 3D-QSAR study 
which can identify inhibitors with high biological activities. Ten 
PhModels were generated by the HypoGen Best algorithm. The 
established PhModel, Hypo01, was evaluated in the cost 
function analysis of its correlation coefficient (r), RMS, cost 
difference, and configuration cost, with the values: 0.955, 1.28, 
192.51, and 16.07, respectively. The result of Fischer’s 
cross-validation test for Hypo01 model yielded a 95% 
confidence level, and the correlation coefficient (rtest) of the 
testing set yielded a best value of 0.81. 
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3D-QSAR study to build Pharmacophore hypotheses 
(denoted as PhModels) for Chk2 inhibitors. We have faith 
that PhModels with the information about potential chemical 
interactions can help medicinal chemists to identify or design 
new Chk2 inhibitors 

. 
TABLE I: EXPERIMENTAL AND ESTIMATED IC50 VALUES OF THE 

TRAINING-SET INHIBITORS FOR CHK2 

No. Experimental IC50 
(nM) Estimated IC50 (nM) Errora

1 2.3 15 +6.6 
2 6.6 6.8 +1 
3 14 20 +1.4 
4 18 8.5 -2.1 
5 23 19 -1.2 
6 37 30 -1.2 
7 47 23 -2.1 
8 70 110 +1.6 
9 72 47 -1.5 

10 110 220 +1.9 
11 270 670 +2.5 
12 470 2200 +4.7 
13 640 2000 +3.1 
14 830 1200 +1.5 
15 900 1000 +1.1 
16 1100 970 -1.1 
17 1200 1100 -1.1 
18 1800 860 -2.1 
19 6700 1700 -3.9 
20 15000 22000 +1.5 
21 19000 3600 -5.3 
22 28000 6800 -4.1 
23 37000 63000 +1.7 
24 50000 16000 -3.2 
25 100000 160000 +1.6 

a+, Estimated IC50 > Experimental IC50; –, Estimated IC50 < Experimental 
IC50. 
 
TABLE II: CHARACTERISTICS OF THE TEN PHARMACOPHORE HYPOTHESES 

FOR CHK2 

No. Total 
cost 

Cost 
differencea 

RMS 
deviation 

Training 
set (r) 

Testing 
set (rtest)

1 111.68 192.51 1.28 0.955 0.810 

2 117.68 186.51 1.46 0.941 0.772 

3 121.50 182.69 1.59 0.929 0.769 

4 122.78 181.41 1.62 0.927 0.771 

5 122.98 181.21 1.63 0.926 0.807 

6 123.14 181.05 1.59 0.929 0.777 

7 125.01 179.18 1.65 0.924 0.802 

8 125.36 178.83 1.69 0.920 0.663 

9 125.66 178.53 1.69 0.919 0.794 

10 125.89 178.30 1.69 0.920 0.795 
a (null cost – total cost), null cost = 304.19, fixed cost = 89.77, configuration 
cost = 16.07. All costs are in units of bits. 
 

II. MATERIALS AND METHODS 

A. Biological Data Collection 
In order to construct the PhModels, at first, we collected 

the Chk2 inhibitors with two-dimensional structures and the 

biological activity values from the ChEMBL database [33]. 
Then, according to the structure variations and chemical 
differences in the kinase inhibitor activity, 158 known Chk2 
inhibitors were selected and retrieved. The biological activity 
of 158 known Chk2 inhibitors was represented as IC50 

(nanomolar, nM).  

B. Designing a Pharmacophore Approach 
Before generating the PhModels, we should divide the 158 

Chk2 inhibitors into the training set and testing set, 
respectively. The rules used to select training set inhibitors 
are according to the following: (1) All selected compounds 
should have clear and concise information including 
structure features and activity range. (2) At a minimum, 16 
diverse compounds for training-set were selected to ensure 
the statistical significance. (3) The training-set should 
contain the most and the least active compounds. (4) The 
biological activities of the compounds spanned at least 4 
orders of magnitude. Based on the above four rules, the 158 
Chk2 inhibitors were divided.  

The training set is used to construct the PhModels, and the 
IC50 values of these 25 inhibitors are ranged from 2.3 to 
100,000 nM (Table I). The testing set remaining 133 
inhibitors with the chemical structures and IC50 values shown 
is used to test the predictive ability of the PhModels, and the 
IC50 values of the 133 testing set inhibitors are ranged from 
3.4 to 74,000 nM. After selecting the training set inhibitors, 
we established ten PhModels at first, and then we used the 
cost function and Fischer’s cross-validation test to estimate 
the prediction abilities of PhModels. 

C. Pharmacophore Generation 
In this study, we used the HypoGen program [34] in 

Accelrys Discovery studio 2.1 to generate PhModels. At the 
initial step, 3D conformations of the training set inhibitors 
were generated by using “3D-QSAR Pharmacophore 
Generation protocol” with the BEST generating algorithm 
and based on the CHARMm-like force field. The 
CHARMm-like force field in conjunction with three rules: (1) 
Conjugate-gradient minimization in torsion space. (2) 
Conjugate-gradient minimization in Cartesian space. (3) 
Quasi-Newton minimization in Cartesian space. The 
conformational-space energy was constrained ≤ 20 kcal/mol 
which represented the maximum allowed energy above the 
global minimum energy. For each training set inhibitor, the 
number of the diverse 3D conformations was set to ≤ 255. All 
other parameters were set as default values. Following the 
above rule, the 3D conformations were generated, and then 
we can construct the hypothesis model by using “Ligand 
Pharmacophore Mapping protocol”. 

D. Quality Validation Methods of PhModels 
Cost-function Analysis, there are two important theoretical 

cost values (in units of bits) which were used to determine 
each PhModel. One is the fixed cost that represents the 
simplest model that accurately predict all experimental IC50 
values of training set inhibitors. The other one is the null cost 
which represents the largest cost for a model that has no 
prediction ability. A good PhModel should content the 
following condition. The difference between the fixed and 
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null costs is ＞70 bits that means there is a perfect chance of 

＞90% that the experimental and estimated activities will be 
correlation. In addition, the total cost should be close to the 
fixed cost, and the configuration cost, representing the space 
complexity of models, must be ＜17 bits for a good model. 

Fischer’s Cross-validation Test was used to validate the 
quality of PhModels, and to verify the structure and activity 
of the models whether has a great relativity. The IC50 values 
of training set inhibitors were randomly assigned to members 
of the set, and this set will be used to generate randomly 
PhModels. The same features and parameters used to 
generate the ten initial PhModels were incorporated into this 
trial. The formula of Fischer’s cross-validation test is written 
as:  

         Confidence (%) = [1 – (1 + x) / (1 + y)] × 100%          (1) 

where x is the number of the hypotheses which have a total 
cost lower than the original hypotheses, and y is the number 
of times the procedure executed. According to the formula, 
we can run 19 times to achieve a confidence level of 95%. 

Correlation Coefficient Analysis was used to verify the 
relativity of estimated IC50 and experimental IC50 for the 
training and testing set inhibitors. If the value of the 
correlation coefficient is close to 1, the verified PhModel will 
be good. 

 

 
Fig. 1. The original total cost of PhModel and ten random total costs of 

lowest ones by randomized pharmacophore. 
 

III. RESULTS 

A. PhModel Generation Results 
Ten PhModels were generated by using 25 training set 

inhibitors. Each of them took four features: three hydrogen 
bond acceptors (A) and one hydrophobic aromatic (HYAR). 
The characteristics of ten PhModels, Hypo01 to Hypo10, 
were listed in Table II. The null cost of ten established 
models is 304.19 bits, and the fixed cost is 89.77 bits. In 
addition, the difference between null and fixed cost is 214.42 
bits which means all ten hypotheses had high prediction 
ability. In other words, a difference should be ＞70 bits then 

there is an excellent chance of ＞90% that the experimental 
and estimated activities will be correlation. Furthermore, the 
configuration cost is 16.07, which is in allowed range lower 
than the value of 17 bits. According to the cost function 
analysis, the total cost of a good quality PhModel should 

approach the fixed cost and be far away from the null cost. In 
the results, the highest total cost of worst hypothesis, Hypo10, 
is 125.89 bits. The correlation coefficient (r) of the ten 
hypotheses is ranged from 0.955 to 0.92.  

B. Fischer’s Cross-Validation Test 
Fischer’s test is used to cross-validate the quality of 

PhModels. The IC50 values of training set inhibitors were 
randomly assigned to each inhibitor in the training set. The 
parameters of randomized PhModel were the same as those 
used to generate the original PhModel. In total, 19 random 
PhModels were generated. The total cost of the ten original 
PhModel all were less than any of the 19 random PhModel, 
and it indicated that the ten PhModels had a 95% confidence 
level with the achieved validation to generate the training set 
inhibitors. Fig. 1 shows the total costs from original 
PhModels and the ten lowest total costs from randomization. 
As the above, the training set inhibitors could not be 
generated by randomized PhModels. 

C. Correlation Analysis of Testing Set Inhibitors 
Another main goal is to evaluate the prediction ability of a 

PhModel in testing set inhibitors. Here, the prediction 
activities of 133 inhibitors in the testing set were estimated by 
ten hypotheses. The correlation coefficient (rtest) was 
obtained from the linear regression of estimated activity 
versus the experimental. In the results, the best rtest for testing 
set inhibitors was 0.81 obtained from Hypo01 shown in 
Table II. We also compared with the other Hypo models that 
Hypo01 had the best ability to predict the experimental 
activity. Therefore, we considered that Hypo01 was a 
dependable predictor of Chk2 inhibitor activity. 

REFERENCES 
[1] K. M. Culligan, C. E. Robertson, J. Foreman, P. Doerner, and A. B. 

Britt, “ATR and ATM play both distinct and additive roles in response 
to ionizing radiation,” The Plant Journal, vol. 48, pp. 947-961, 2006. 

[2] J. Yang, Z. P. Xu, Y. Huang, H. E. Hamrick, P. J. Duerksen-Hughes, 
and Y. N. Yu, “ATM and ATR: Sensing DNA damage,” World J 
Gastroenterol , vol. 10, no. 2, pp. 155-160, 2004. 

[3] Q. Liu, S. Guntuku, X. S. Cui, et al., “Chk1 is an essential kinase that is 
regulated by Atr and required for the G 2/M DNA damage checkpoint,” 
Genes Dev., vol. 14, pp. 1448-1459, 2000. 

[4] C. T. Alveal, T. M Calonge, and M. J O'Connell, “Regulation of Chk1,” 
Cell Division, vol. 4, pp. 8, 2009. 

[5] J. Bartek, J. Falck, and J. Lukas, “CHK2 KINASE — A BUSY 
MESSENGER,” Nat Rev Mol Cell Biol., vol. 2, pp. 877-86, Dec, 2001. 

[6] J. Li, B. L. Williams, L. F. Haire, M. Goldberg, E. Wilker, D. Durocher, 
M. B. Yaffe, S. P. Jackson, and S. J. Smerdon, “Structural and 
functional versatility of the FHA domain in DNA-damage signaling by 
the tumor suppressor kinase CHK2,” Molecular Cell, vol. 9, pp. 
1045-1054, May, 2002. 

[7] A. W. Oliver, A. Paul, K. J. Boxall, S. E. Barrie, G. W. Aherne, M. D. 
Garrett, S. Mittnacht, and L. H. Pearl, “Trans-activation of the 
DNA-damage signalling protein kinase Chk2 by T-loop exchange,” 
The EMBO Journal, vol. 25, pp. 3179-3190, 2006. 

[8] Z. Cai, N. H. Chehab, and N. P. Pavletich, “Structure and activation 
mechanism of the CHK2 DNA damage checkpoint kinase,” Molecular 
Cell, vol. 35, pp. 818-829, September, 2009. 

[9] Z. A. Stewart and J. A. Pietenpol, “Signaling and cell cycle 
checkpoints,” Chem. Res. Toxicol., vol. 14, no. 3, pp. 53, 2001. 

[10] G.T. Lountos, A. G. Jobson, J. E. Tropea, C. R. Self, G. Zhang, Y. 
Pommier, R. H. Shoemaker, and D. S. Waugh, “Structural 
characterization of inhibitor complexes with checkpoint kinase 2 
(Chk2), a drug target for cancer therapy,” Journal of Structural Biology, 
vol. 176, pp. 292-301, 2011. 

[11] A. G. Jobson, G. T. Lountos, P. L. Lorenzi, J. Llamas, J. Connelly, D. 
Cerna, J. E. Tropea, A. Onda, G. Zoppoli, S. Kondapaka, G. Zhang, N. 

International Journal of Chemical Engineering and Applications, Vol. 4, No. 2, April 2013

64



  

J. Caplen, J. .H. Cardellina II, S. S. Yoo, A. Monks, C. Self, D. S. 
Waugh, R. H. Shoemaker, and Y. Pommier, “Cellular inhibition of 
Checkpoint Kinase 2 (Chk2) and potentiation of camptothecins and 
radiation by the novel Chk2 inhibitor PV1019 
[7-Nitro-1H-indole-2-carboxylic acid 
{4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide],” JPET, vol. 331, 
pp.  816-826, 2009. 

[12] J. J. Caldwell, E. J. Welsh, C. Matijssen, V. E. Anderson, L. Antoni, K. 
Boxall, F. Urban, A. Hayes, F. I. Raynaud, L. J. M. Rigoreau, T. 
Raynham, G. W. Aherne, L. H. Pearl, A. W. Oliver, M. D. Garrett, and 
I. Collins, “Structure-based design of potent and selective 
2-(Quinazolin-2-yl) phenol Inhibitors of Checkpoint Kinase 2,” J. Med. 
Chem., vol. 54, pp. 580-590, 2011. 

[13] G. T. Lountos, A. G. Jobson, J. E. Tropea, C. R. Self, G. Zhang, Y. 
Pommier, R. H. Shoemaker, and D. S. Waugh, “X-ray structures of 
checkpoint kinase 2 in complex with inhibitors that target its 
gatekeeper-dependent hydrophobic pocket,” FEBS Letters, vol. 585, pp.  
3245-3249, 2011. 

[14] S. Hilton, S. Naud, J. J. Caldwell, K. Boxall, S. Burns, V. E. Anderson, 
L. Antoni, C. E. Allen, L. H. Pearl, A. W. Oliver, G. W. Aherne, M. D. 
Garrett, and I. Collins, “Identification and characterisation of 
2-aminopyridine inhibitors of checkpoint kinase 2,” Bioorganic & 
Medicinal Chemistry, vol. 18, pp. 707-718, 2010. 

[15] H. Kubinyi, G. Folkers, and Y. C. Martin, “3D QSAR in drug design 
recent advances,” vol. 3, pp. 1-353, 2002. 

[16] Y. K. Jiang, “Molecular docking and 3D-QSAR studies on 
β-phenylalanine derivatives as dipeptidyl peptidase IV inhibitors,” J 
Mol Model, vol. 16, pp. 1239-1249, 2010. 

[17] R. R. S. Pissurlenkar, M. S. Shaikh, and E. C. Coutinho, “3D-QSAR 
studies of Dipeptidyl peptidase IV inhibitors using a docking based 
alignment,” NVPJ Mol Model, vol. 13, pp. 1047-1071, 2007. 

[18] T. Puzyn et al., “3D-QSAR – APPLICATIONS, RECENT 
ADVANCES, AND LIMITATIONS,” Recent Advances in QSAR 
Studies, pp. 103-125, 2010. 

[19] A. Lauria, M. Ippolito, M. Fazzari, M. Tutone, F. D. Blasi, Francesco 
Mingoia, and A. M. Almerico, “IKK-inhibitors: An analysis of 
drug–receptor interaction by using molecular docking and 
pharmacophore 3D-QSAR approaches,” Journal of Molecular 
Graphics and Modelling, vol. 29, pp. 72-81, 2010. 

[20] S. John, S. Thangapandian, M. Arooj, J. C. Hong, K. D. Kim, and K. W. 
Lee, “Development, evaluation and application of 3D QSAR 
pharmacophore model in the discovery of potential human renin 
inhibitors,” BMC Bioinformatics, vol. 12, Suppl 14, pp. 1-14,  2011. 

[21] K. W. Lee and J. M. Briggs, “Comparative molecular field analysis 
(CoMFA) study of epothilones – tubulin depolymerization inhibitors: 
Pharmacophore development using 3D QSAR methods,” Journal of 
Computer-Aided Molecular Design, vol. 15, pp. 41-55, 2001. 

[22] F. A. Pasha, M. Muddassar, and S. J. Cho, “Molecular docking and 3D 
QSAR studies of Chk2 inhibitors,” Chem Biol Drug Des, vol. 73, pp.  
292-300, 2009. 

[23] S. Durdagi, T. Mavromoustakos, and M. G. Papadopoulos, “3D QSAR 
CoMFA/CoMSIA, molecular docking and molecular dynamics studies 
of fullerene-based HIV-1 PR inhibitors,” Bioorganic & Medicinal 
Chemistry Letters, vol. 18, pp. 6283-6289, 2008. 

[24] M. E. Suh, S. Y. Park, and H. J. Lee, “Comparison of QSAR methods 
(CoMFA, CoMSIA, HQSAR) of anticancer 1-N-substituted 
Imidazoquinoline-4, 9-dione derivatives. Bull,” Korean Chem. Soc., 
vol. 23, no. 3, pp. 417-422, 2002. 

[25] S. J. Bang and S. J. Cho, “Comparative molecular field analysis 
(CoMFA) and comparative molecular similarity index analysis 
(CoMSIA) study of mutagen X. bull,” Korean Chem. Soc., vol. 25, no. 
10, pp. 1525-1530, 2004. 

[26] L. Ghemtio, Y. Zhang, and H. Xhaard, “CoMFA/CoMSIA and 
pharmacophore modelling as a powerful tools for efficient virtual 
screening: Application to anti-leishmanial betulin derivatives,” Centre 
for Drug Research, Faculty of Pharmacy, University of Helsinki, 
Finland, 2012. 

[27] G. Klebe, “Comparative molecular similarity indices analysis: 
CoMSIA,” Institute of Pharmaceutical Chemistry, University of 
Marburg, Marbucher Weg 6, D 35032 Marburg, Germany, 2002. 

[28] G. Klebe and U. Abraham, “Comparative molecular similarity index 
analysis (CoMSIA) to study hydrogen-bonding properties and to score 
combinatorial libraries,” Journal of Computer-Aided Molecular 
Design, vol. 13, pp. 1-10, 1999. 

[29] M. Gupta, S. Gupta, H. Dureja, and A. K. Madan, “Superaugmented 
eccentric distance sum connectivity indices: Novel highly 

discriminating topological descriptors for QSAR⁄QSPR,” Chem Biol 
Drug Des, vol. 79, pp. 38-52, 2012. 

[30] I. Mitra, A. Saha, and K. Roy, “Pharmacophore mapping of 
arylamino-substituted benzo[b]thiophenes as free radical scavengers,” 
J Mol Model, vol. 16, pp. 1585-1596, 2010. 

[31] K. Boppana, P. K. Dubey, S. A. R. P. Jagarlapudi, S. Vadivelan, and G. 
Rambabu, “Knowledge based identification of MAO-B selective 
inhibitors using pharmacophore and structure based virtual screening 
models,” European Journal of Medicinal Chemistry, vol. 44,  pp. 
3584-3590, 2009. 

[32] M. Chopra, R. Gupta, S. Gupta, and D. Saluja., “Molecular modeling 
study on chemically diverse series of cyclooxygenase-2 selective 
inhibitors: generation of predictive pharmacophore model using 
Catalyst,” J Mol Model, vol. 14, pp. 1087-1099, 2008. 

[33] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. 
Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, and 
J. P. Overington, “ChEMBL: a large-scale bioactivity database for drug 
discovery,” Nucleic Acids Research, vol. 40, Database issue, 
D1100-D1107, 2012. 

[34] P. W. Sprague, “Automated chemical hypothesis generation and 
database searching with Catalyst(R),” Perspect. Drug Discovery Des, 
vol. 3, pp. 1-20, 1995. 

 
Yen-Ling Wang received a B.S. degree in 
Department of Computer Science and Information 
Engineering from Fu Jen University in 2009. She is 
currently a Master student in the Department of 
Computer Science and Information Engineering at 
Chang Gung University. His research interests are 
in the areas of Computational Chemistry and Viral 
Research. 

 
Chun-Yuan Lin received a B.S. degree in 
Department of Information Engineering and 
Computer Science from Feng Chia University in 
1999, and the M.S. and Ph.D. degrees in 
Department of Information Engineering and 
Computer Science from Feng Chia University in 
2000 and 2003, respectively. He joined the 
Institute of Molecular and Cellular Biology and  

the Department of Computer Science at National Tsing Hua University as a 
post-doctoral fellow in 2003 and 2006, respectively. In 2007, he joined the 
Department of Computer Science and Information Engineering at Chang 
Gung University as an assistant professor. He also is a faculty Member at 
Research center for Emerging Viral Infections in Chang Gung University. 
His research interests are in the areas of parallel and distributed computing, 
proteomics, Genomics, Systems Biology, Next-Generation Sequencing and 
Computational Chemistry. 
 

Kuei-Chung Shih received a B.S. degree in 
Department of Information Management from 
Nan Kai University of Technology in 2003, and 
the M.S. degrees in Department Institute of 
Bioinformatics from Asia University in 2005. In 
2011, he received a Ph.D. degree in Department of 
Computer Science from National Tsing Hua 
University. He joined the Department of Comput-

er Science at National Tsing Hua University as a post-doctoral fellow in 
2011.His research interests are in the areas of bioinformatics, target drug 
design, pharmacophore, 3D-QSAR, molecular dynamics and computational 
chemistry. 
 

Chuan Yi Tang received his B.S. degree in 
Electrical Engineering and M.S. degree in 
Computer Science from National Tsing Hua 
University, Taiwan, in 1980 and 1982, 
respectively.  He obtained his Ph.D. from the 
Department of Computer Science and Information 
Engineering at National Chiao Tung University, 
Taiwan, in 1985.  In the same year, he joined the 

faculty of Computer Science at National Tsing Hua University, where he 
became a full professor in 1992. Currently, he is the President of the 
Providence University, Taiwan.  His research interests include the analysis 
and design of algorithms, computational molecular biology, bioinformatics, 
parallel processing, and computer aided engineering. More than fifty 
research papers have been published in the prestigious journals of computer 
science and related fields. 

 

International Journal of Chemical Engineering and Applications, Vol. 4, No. 2, April 2013

65


