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Abstract—A mathematical analysis was performed on an 

acid-gas removal process applied to an aqueous feed stream 

using a hollow fiber membrane contactor in liquid-liquid 

extraction mode. Furthermore, a comparison was made 

between the obtained simulation results and with the earlier 

published experimental results. The model development is 

based on a process setup wherein synthetic wastewater feed 

solution was considered to be passing through the lumen side 

and later recycled back to the feed tank. On the shell side of the 

membrane contactor, an extractant was circulated in the 

counter direction. The model is developed considering radial 

and axial diffusion mechanisms and convection on the lumen 

side. Mass transfer across the pore by diffusion from Knudsen 

and bulk flow has also been considered. The partial differential 

equations obtained, were solved by converting them into a 

number of ordinary differential equations by using the finite 

difference method. The model was solved and simulated using 

MATLAB. The effect of various membrane contactor 

parameters such as the number of fibers and their effective 

lengths on the removal of gases have also been studied in this 

analysis. The simulated results obtained were observed to be in 

excellent agreement with the experimental results obtained for 

the acidic gas, H2S. 

 
Index Terms—Waste water treatment, membrane separation, 

hollow fiber membrane contactor, degasification of water, 

modeling and simulation. 

 

I. INTRODUCTION 

Large amounts of dissolved acidic gases such as CO2 and 

H2S are generally found in natural water reservoirs and 

industrial wastewater. CO2 is present in natural water 

reservoirs because of the respiration and photosynthesis of 

marine animals and plants, decay of organic substances, and 

dissolution of carbonate salts present at the reservoir 

bottoms[1]. H2S is also present in thermal sulfur springs [2].  

Industrial plants manufacturing ammonia and urea 

generate wastewater streams containing high CO2 contents. 

In general, industries that manufacture viscose rayon, paper, 

and pulp discharge wastewater streams containing high H2S 

concentrations. Dissolved H2S may also be found in 

untreated agricultural water output and in effluent streams 

generated from the hydrocracking of crude oil [3], [4]. 

Conventional processes for wastewater treatment, such as 

aeration, forced draft degasification, and vacuum 

degasification may involve high cost as these processes 
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require high duty equipments like blowers etc. In such cases, 

membrane contactor could become a viable alternative. 

Methods including vacuum sweep mode and gas-liquid 

extraction in membrane contactors may have some 

operational drawbacks; moreover, precise design is required 

to avoid loading or flooding in columns [5]. In recent years, 

membrane contactors have evolved as very important tool for 

separation. These contactors consist of a cylindrical cartridge 

which contains number of microporous hollow fibers 

constituting the lumen side of the contactor. Fibers in the 

membrane contactor are polymeric and can be either 

hydrophobic or hydrophilic. Polypropylene and 

polytetrafluoroethylene are the polymeric materials used for 

making hydrophobic membranes, which can be used for 

removing volatile species and gases from water.  

The degasification of feed streams using membrane 

contactors has been studied by many researchers. CO2 

removal from gas using monoethanolamine as the extractant 

in the membrane contactor has been studied by Bottino et al. 

[6], while experimental study and numerical analysis of 

carbon dioxide removal from water in liquid-liquid 

extraction mode have been performed by Agrahari et al. [7]. 

Keshavarz et al. [8] have presented a mathematical model for 

membrane contactors used for the simultaneous absorption of 

CO2 and H2S from gaseous feed to diethanolamine (DEA) 

solution. McDermott et al. [9] studied the removal of volatile 

and semi-volatile organic components from water using 

membrane contactors in the vacuum sweep mode. More 

specifically, Mandowara and Bhattacharya [10] have also 

performed a mathematical analysis on the removal of 

ammonia from water using a membrane contactor in the 

gas-liquid mode operation, while Agrahari et al. [11] 

performed an experimental study of H2S extraction from an 

aqueous stream where the model was developed by defining 

the transport of a gas molecule by adsorption/desorption.  

The mathematical analysis used in the present study aims 

at improving the modeling of the contactor system by 

considering radial and axial diffusion mechanisms, 

convection on the lumen side, and mass transfer across the 

porous membrane. The Knudsen and bulk diffusion 

mechanisms are assumed to represent mass transfer in the 

membrane pores. This model predicts results that are in better 

agreement with the experimental data than any previous 

mathematical analysis. 

 

II. MODEL DESCRIPTION 

A schematic of hollow fiber membrane contactor is shown 
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in Fig. 1, which describes the flow pattern and various mass 

transfer steps taking place in the contactor system. Synthetic 

wastewater feed is passed through the lumen side of the 

contactor at a particular flow rate, while monoethanolamine 

is passed through the shell side in the counter flow direction. 

Both streams are recycled back to their respective original 

tanks. Gaseous molecules are desorbed from the lumen side 

to the shell side. Here they are assumed to instantaneously 

react with monoethanolamine as the latter is considered to be 

at a high concentration in the extract phase.  

A. Assumptions 

The mathematical model for the system makes the 

following assumptions: 

 

1) Physical and transport conditions for the feed solution 

remain unchanged as the solution is dilute. 

2) Isothermal operating conditions. 

3) No wetting or swelling in the membrane, and pores are 

filled with air. 

4) A Fully developed parabolic velocity profile is assumed 

on the lumen side. The operational experimental 

conditions for flow on the lumen side are chosen to be at 

very small Reynolds number. 

5) The pH of the feed solution is controlled so that the gas 

remains in the molecular form.  

6) The respective volumes of the feed and extract used in 

the process are very large in comparison to the volume of 

the membrane contactor. 

7) An instantaneous reaction is assumed to occur on the 

shell side as the extract phase is highly concentrated.  

B. Governing Equations on the Lumen Side 

Transport of gas on the lumen side can be expressed by the 

unsteady-state convective-diffusive equation, which 

accounts for diffusion components in both the radial and 

axial directions and convection in the axial direction:   
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Here, Cl is the concentration of gas, and Dl denotes the 

diffusivity of the gas in the aqueous feed solution. A fully 

developed parabolic velocity profile for laminar flow 

condition has been assumed on the lumen side of the 

contactor; therefore, vz can be defined as [12]: 
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Here, r1 is the inner radius of the fiber, and V  is the 

average velocity of the fluid flowing on the lumen side that 

can be defined as: 

2
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The Feed flow rate and the number of fibers in the 

membrane contactor are denoted by Q and N, respectively.  

C. Initial Condition (at t = 0) 

For all values of r and z, i.e., 0 < r < r1 and 0 < z < L: 

              Cl = Co,in                                (4) 

Co,in is the initial concentration of gas in the feed solution. 

D. Boundary Conditions 

At r = 0, for all values of t and z, an axial symmetry 

condition can be applied: 
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At z = 0, for all values of r and t:  
 

 

Cl= Ctank (t)                           (6) 

For z = L, for all values of r and t, it is assumed that 

diffusion of the gaseous species in the axial direction, at the 

outlet of the lumen side, becomes negligible in comparison to 

the bulk convection flow: 
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At r = r1, for all values of z and t, the flux of the gas in the 

aqueous phase is equal to the flux of the gas diffusing 

through the pore [10]: 
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According to our assumption that instantaneous reaction 

occurs on the shell side (i.e. pb
g =0), the above equation 

reduces to:  
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At r = r1, Henry’s law can be applied (at the liquid-gas 

interface) [13]: 
 

 

int ,intg

a lp H C                        (10) 

Now, the mass transfer coefficient inside the pore can be 

estimated by using following equation [10]: 
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Here, τ,  , b, and Dc,pore denote the tortuosity of the pore, 

porosity of the membrane, thickness of the membrane, and 

combined diffusivity, respectively. As discussed earlier, the 

pores of the hydrophobic membrane are filled by air, and the 

transfer of gas can occur by either Knudsen flow or bulk 

diffusion, depending upon the ratio of the pore radius to the 

mean free path across the pore. In this study, we have 

assumed that both flows coexist; hence combined diffusivity 

can be obtained from the following correlation [13]: 

, ,
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Here, Dk,pore is the Knudsen diffusivity and can be defined 

as: 
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 The units of Dk,pore are cm2∙s-1. 

 

 

Fig. 1. Schematic representation of the process and various transport steps in the fiber module. 

 

A. Mass Balance across Feed Tank 

During the experiment, an aqueous feed solution is 

continuously recycled, and uniform mixing in the tank is 

assumed. The mass balance equation across the tank can be 

written as: 
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Here, Cl,tank  and Cl,z=l denote the concentrations of gas in 

the tank and at the exit of the membrane contactor, 

respectively. Q is the flow rate of feed solution, and V is the 

volume of the aqueous solution. 

The initial condition for Cl,tank  can be written as: 
 

 

For t = 0; Cl,tank = C0                        (15) 

 
      

  

   

    

   

 

     

  

  

  

  

  

  

  

   

   

  

B. Values of Parameters  

In this study, for modeling purposes, we have used the 

physical parameter values of H2S to represent the acidic gas, 

which are given in Table I. The contactor parameters used in 

this analysis are also described in Table II. 

 

III. RESULTS AND DISCUSSIONS 

A. Comparison between Experimental Results [11]  and 

Simulated Results 

Agrahari et al. [11] obtained experimental results for the 

removal of H2S from aqueous feed using Liqui-Cel® hollow 

fiber membrane contactor. In this study, the parameters of the 

same membrane contactor are used for solving the model. Fig. 

2 compares the experimental and simulated results for the 

concentration variation and fractional removal of gas from 

the aqueous feed solution. 
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 Fig. 2. Simulated and experimental results for variation in concentration of 

gas in aqueous feed solution with time 
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TABLE I: PHYSICAL PARAMETERS FOR H2S AT 298K

Properties Values

Diffusivity in water, Dl (cm2/s) 1.88×10-5

Diffusivity in air, D air (cm2/s) 0.15

Molecular weight of  H2S, MW (g/mol) 34.08

TABLE II: SPECIFICATION OF LIQUI-CEL
® MODULE 

Parameters Values

Porosity, ɛ 0.4

Tortuosity factor for pore, τ 2.54

Inner diameter of fiber, di  (mm) 0.24

Outer diameter of fiber, do (mm) 0.3

Effective fiber length, L (m) 0.16

Total number of fibers in contactor, N 10,200

Pore diameter, dpore (nm) 30

Thickness of membrane, b (µm) 60

Contact area, (m2) 1.4



  

B. Influence of Feed Flow Rate on Concentration of Gas 

on Lumen Side 

Fig. 3 depicts the effect of increasing the feed flow rate on 

concentration variation with time. It can be observed from 

Fig. 3 that the rate of gas removal increases as the feed flow 

rate increases. This is evident because the increased 

convection on the lumen side leads to a lower viscous 

membrane resistance.  
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Fig. 3. Variation in fractional residual concentration of solution with 

C0=1100 ppm with time for different feed flow rates  
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Fig. 4. Variation in fractional removal of gas with C0=1100 ppm Q=0.4 

L/min with time for different values of numbers of fibers  

 

C. Effect of Membrane Contactor Variables on Fractional 

Removal of Gas over Time 

1) Number of fiber in contactor 

Fig. 4 illustrates the effect of the number of fibers on the 

fractional removal of gas, with the number of fibers ranging 

from 8,000 to 20,000. It can be seen from the graph that the 

removal efficiency increases as the number of fibers 

increases. This is because the area of the porous membrane 

available for desorption also increases with an increase in the 

number of fibers. 

2) Effective lengths of  fibers in  contactor  

Fig. 5 depicts the effect of varying the lengths of fibers on 

the fractional removal of gas. It is observed that the gas 

removal becomes faster as length increases, because the area, 

from which the radial diffusion can occur, also increases for 

longer tubes. Further, above a certain value of L, not much 

variation is observed because of the dilution of the feed 

solution. 

D. Variation in Concentration over Time at Different 

Axial Points 

Fig. 6 illustrates the variation in gas concentration over 

time at different points across the length of the lumen side. 

As expected, the concentration of gas at the same time 

across the length of the lumen side is observed to be 

decreasing. This is because of the radial diffusion and 

subsequent transfer of gas molecules to the shell side 

between the two axial points. 
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Fig. 5. Variation in fractional removal of gas with C0=1100 ppm Q=0.4 

L/min with time for different length of lumen fibers  
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Fig. 6. Variation in fractional residual gas concentration with C0=1100 and 

ppm Q=0.4 L/min with time for different points in axial direction 
 

IV. CONCLUSION 

Degasification of water using a membrane contactor has 

been successfully analyzed, and the obtained results show an 

excellent agreement with the available experimental results. 

Further, the variation in the gas concentration in the aqueous 

feed solution over time has been obtained for different 

operating conditions such as feed flow rate and initial 

concentration. The effects of various parameters of the 

membrane contactor on the fractional removal of gas have 
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also been discussed. In particular, it has been found that the 

degasification efficiency of the contactor increases with 

increase in the number of fibers and with the length of the 

lumen side. 

NOTATIONS 

Co Initial feed concentration (moles/m3) 

Cl Gas concentration on lumen side (moles/m3) 

Cl,tank Gas concentration in the tank (moles/m3) 

dpore Diameter of pore (m) 

Dc,pore Combined diffusion coefficient (m2/s) 

Dl Diffusion coefficient of gas in water (m2/s) 

Dk,pore Knudsen diffusion coefficient of gas(m2/s) 

Dair Diffusion coefficient of gas in air (m2/s) 

Ha Henry’s law constant (Pa.m3/mol) 

L Length of fiber (m) 

MW Molecular weight of gas (kg/mol) 

N Number of fibers in the Contactor module 

pint
g Partial pressure of gas at r = r1 (Pa) 

pb
g Partial pressure of gas at r = r2 (Pa) 

Q Feed flow rate (m3/s) 

r Radial distance from the lumen-axis (m) 

r1 Inner radius of the lumen (m) 

r2 Outer radius of fiber (m) 

R Universal gas constant (J/(mol.K)) 

z Axial length (m) 

t Time (s) 

t0 Initial time (s) 

T Temperature (K) 

vz Axial velocity on the lumen side (m/s) 

V Volume of feed solution in the tank (m3) 

  Porosity 

τ Tortuosity factor for pore 

V  Average velocity on the lumen side (m/s) 
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