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Abstract—In this article, a synthesis approach for robust 

model predictive control using linear matrix inequalities is 

presented. Uncertain time-varying parameters and bounded 

additive disturbances are explicitly taken into account in the 

controller design. Robust stability and constraint satisfaction 

are guaranteed by computing a positively invariant set 

containing the measured state at each sampling instant. The 

effectiveness of the proposed algorithm is illustrated by a 

simulation example. 

 
Index Terms—Robust model predictive control, uncertain 

time-varying parameters, bounded additive disturbances.  

 

I. INTRODUCTION 

Model predictive control (MPC) is an advanced control 

algorithm widely adopted in the chemical industry. At each 

sampling instant, a dynamic optimization problem based on 

an explicit process model is solved and the first computed 

input is implemented to the process. Since the process model 

is only an approximation of the real process, MPC should be 

robust to model uncertainty and disturbance [1]-[3].  

Robust MPC synthesis of linear systems subject to 

uncertain time-varying parameters has been widely 

investigated [4]-[7]. The main idea is to compute an 

ellipsoidal invariant set that can guarantee robust stability of 

the closed-loop system. At each sampling time, a state 

feedback gain is obtained by solving an optimization problem 

subject to linear matrix inequality (LMI) constraints. Since 

only uncertain time-varying parameters are included in the 

MPC formulation, robust stability cannot be guaranteed in the 

presence of disturbances. Robust MPC synthesis using 

polyhedral invariant sets has also been widely studied [8]-[10]. 

In the problem formulation, it is assumed that there is no 

disturbance present so these algorithms cannot deal with 

disturbance.     

In the context of tube-based robust MPC [11]-[13], 

disturbances are explicitly taken into account in the problem 

formulation. The main idea is to compute the regions around 

the nominal predicted trajectory that contain all possible 

states of the process. At each sampling time, a sequence of 

control inputs is obtained by solving an optimal control 

problem subject to constraints that are tighter than the original 

ones. Tube-based robust MPC can also handle model 

uncertainty if uncertain time-varying parameters are 

represented by virtual disturbances [14]. 
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Since there will always be model uncertainty and 

disturbance acting on the system, they should be considered in 

the controller design. In this paper, both uncertain 

time-varying parameter and bounded additive disturbance are 

explicitly taken into account in the MPC formulation. Robust 

stability and constraint satisfaction are guaranteed by 

computing a positively invariant set containing the measured 

state at each sampling instant. This article is organized as 

follows. In Section II, the problem statement is presented. In 

Section III, robust MPC synthesis is proposed. In Section IV, 

the effectiveness of the proposed MPC algorithm is illustrated 

by a simulation example. Finally, the conclusions are drawn in 

Section V.   

Notation: For a vector x  and a positive-definite matrix P , 

Pxxx T

P


2
. )(kx  is the state measured at real time k  and 

)/( kikx   is the state at prediction time ik   predicted at 

real time k . The symbol   denotes symmetric blocks in 

matrices. An element belonging to a convex hull    Co  

means that it is a convex combination of the elements in     . 

I  is the identity matrix with appropriate dimension. 

 

II. PROBLEM STATEMENT 

Consider the following linear time-varying system 
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where xn
kx )(  is the state, un

ku )(  is the control input, 

vn
kv )(  is the disturbance and yn

ky )(  is the output. 

The superscripts xn , un , vn  and yn  are the number of 

elements in )(kx , )(ku , )(kv  and )(ky , respectively. The 

input and output constraints are uku )( , 

0hu ,  unh ,...,2,1  and ykCx )( , 0 ry ,  ynr ,...,2,1 .  

It is assumed that any )(kA  and )(kB  belong to a convex 

polytope  ],[],..,,[],,[ 2211 ABAB nnAB BABABACoΩ   and they 

can be written as ],[)()](),([
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j
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j k  where ],[

jj
BA  are the vertices of 

AB
Ω , ABn  

is the number of ],[
jj

BA  and )(kj  are the uncertain 

time-varying parameters. Any )(kD  belongs to a convex 

polytope  
DnD DDDCoΩ ,...,, 21  and it can be written as 
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t
D  are the 

vertices of 
D

Ω , Dn  is the number of 
t

D  and )(kt  are the 

uncertain time-varying parameters. The disturbance )(kv  is 

persistent, bounded and contained in a convex polytope 

 
vmv vvvCoΩ ,...,, 21  where sv  are the vertices of vΩ  and 

vm  is the number of 
s

v . 

The objective of this research is to find a state feedback 

control law that is able to guarantee both robust stability and 

constraint satisfaction within a positively invariant set. The 

set Z  is said to be positively invariant set if it has the 

property that whenever the current state is contained in this set 

Zkx )( , all possible predicted states must be contained in 

this set Zkikx  )/(  for all admissible realizations of 

)( ik
j

 , )( ikt   and )( ikv  , 0i .  

Consider the linear time-varying system (1) at each 

sampling time k , a state feedback control law 

)/()/( kikKxkiku   that (i) minimizes the upper bound 

  on )(kJ  and (ii) guarantees both robust stability and 

constraint satisfaction within a positively invariant set 

 
2

/
P

n
xxZ x  where P  is a Lyapunov matrix, can 

be calculated by solving the following optimization problem 
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s.t. )/(])()([)/1( kikxKikBikAkikx nn        (3) 

 

)()()/(])()([)/1( ikvikDkikxKikBikAkikx   (4) 

 

])/()/([)/()/1(
2222


kikKxkikxkikxkikx nnPnPn  (5) 

 


2

)(
P

kx                                     (6) 

 


2

)/1(
P

kikx                          (7) 

 

 uh nhuukikKx ,...,2,1 ,0 ,)/(                  (8) 

 

 yr nryykikCx ,...,2,1 ,0 ,)/1(              (9) 

                                                                   

where )/( kikxn   is the predicted state not corrupted by 

disturbances,    and   are symmetric weighting matrices. 

The cost monotonicity is guaranteed by (5). A positively 

invariant set containing the measured state at each sampling 

time is computed by (6). All possible predicted states are 

restricted to lie in a positively invariant set by (7). The input 

and output constraints are guaranteed by (8) and (9), 

respectively. 

 

III. ROBUST MPC SYNTHESIS 

Proposition 1: (The cost monotonicity) (5) and (6) are 

satisfied and the cost monotonicity is guaranteed if there 

exists matrices Y , Q  and a scalar   such that the following 

LMIs are satisfied  
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Then, it follows that   is the upper bound on )(kJ


. 

Proof: By following [4], (5) and (6) are ensured by (10) and 

(11), respectively. By summing (5) from 0i  to i  and 

applying (6), it follows that 


)(kJ .  

Proposition 2: (Robust stability) (7) is satisfied if there 

exists matrices Y  and Q  such that the following LMIs are 

satisfied 
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where 10   is a pre-specified scalar. Then, all possible 

predicted states are restricted to lie in a positively invariant set 

by (7) (A positively invariant set containing the measured 

state at each sampling time is computed by (6).). 

Proof: See Appendix A. 

Proposition 3: (Input constraint satisfaction) The input 

constraint (8) is satisfied if there exists matrices Y  and Q  

such that the following LMIs are satisfied 
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Proof: See Appendix B. 

Proposition 4: (Output constraint satisfaction) The output 

constraint (9) is satisfied if there exists matrices Y  and Q  

such that the following LMIs are satisfied  
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     ABy njnr ,...,2,1 ,,...,2,1                                            (15) 

 

where 
r

Φ  is a parameter that can be calculated by solving the 

following optimization problem 

 

         rΦ Φr
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                                                                                     (17) 

where 
r

C  is the rth row of C . 

Proof: See Appendix C 

By considering Propositions 1, 2, 3 and 4, a state feedback 

control law that guarantees both robust stability and constraint 

satisfaction can be calculated. Consider the linear 

time-varying system (1) at each sampling instant k , a state 

feedback control law )/()/( kikKxkiku  , 1YQK  

that guarantees both robust stability and constraint 

satisfaction within a positively invariant set 

 12
 ,/  QPxxZ

P

xn  , is obtained by solving the 

following optimization problem 

 

          min  , , QY                                               (18) 

 

     s.t.   (10)-(17).                                                (19) 

 

By applying the proposed MPC algorithm, all future states 

evolving from the initial state are guaranteed to stay within a 

positively invariant set computed without violation of input 

and output constraints.   

 

IV. A SIMULATION EXAMPLE 

Consider an angular positioning system adapted from [4]. 

The system consists of an electric motor driving a rotating 

antenna so that it always points in the direction of a moving 

object. The motion of the antenna can be described by the 

following linear time-varying system 
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where )(1 kx  is the angular position of the antenna, )(2 kx  is 

the angular velocity of the antenna, )(ku  is the input voltage 

to the motor, )(k  is the uncertain time-varying parameter 

and )(kv  is the disturbance acting on the system. The 

objective is to robustly stabilize )(1 kx  by manipulating )(ku . 

The input constraint is 2)( ku  volts. The symmetric 

weighting matrices
 
in (10) are 










00

01
Ψ  and 00002.0 . 

The value of   in (12) is 0.97. A sampling period is 0.1 s. 

Fig. 1 shows the closed-loop responses of the system when 

the uncertain parameter is varied as 

)(k = 05.5)5.0sin(95.4 k  and the disturbance is varied as 

)(kv = )5.0sin(05.0 k , )5.0sin(03.0 k  and )5.0sin(01.0 k , 

respectively. It can be observed that the state )(1 kx  is 

bounded for all values of uncertain parameter and disturbance 

so robust stability is ensured. 

 

 (a) state 

 

 (b) input 

Fig. 1. The closed-loop responses of the system (a) state (b) input. 

 

Fig. 2 shows the norm of state feedback gain as a function 

of time. The norm of state feedback gain increases as time 

proceeds. This is due to the fact that the input constraint 

imposes lesser and lesser limit on the state feedback gain. 

Finally, the input constraint has no effect on the state feedback 

gain.    

 

Fig. 2. Norm of state feedback gain. 

Table I shows the comparison among the cumulative costs 

International Journal of Chemical Engineering and Applications, Vol. 5, No. 3, June 2014

212



  

)])()([(
140

0

22

 


k
kukx
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when the uncertain time-varying 

parameter and the disturbance are varied as 

)(k = 05.5)5.0sin(95.4 k  and )(kv = )5.0sin(05.0 k , 

respectively. It is seen that the proposed MPC algorithm can 

give less cumulative cost than robust MPC algorithm [5] and 

off-line robust MPC algorithm [10] where the disturbance is 

not taken into account in the MPC design. Since there will 

always be some disturbances acting on the real system, they 

should be explicitly taken into account in the MPC problem 

formulation as proposed.    

 
TABLE I: THE CUMULATIVE COSTS 

Algorithms 
Cumulative 

Costs 

The proposed MPC algoritihm 9.96 

Robust MPC algorithm [5] 10.02 

Off-line robust MPC algorithm 

[10] 
10.94 

     

The numerical simulations have been performed in Intel 

Core 2 Duo (2.53 GHz), 2 GB RAM, using SeDuMi [15] and 

YALMIP [16] within the Matlab R2008a environment. 

 

V. CONCLUSIONS 

In this article, we have presented a synthesis approach of 

robust MPC using linear matrix inequalities. At each 

sampling time, a positively invariant set containing the 

measured state is computed and all future states are restricted 

to lie within this set without violation of input and output 

constraints. The proposed algorithm can guarantee both 

robust stability and constraint satisfaction in the presence of 

uncertain time-varying parameters and disturbances. In the 

future work, this idea can be extended to the case where the 

state cannot be measured. An off-line robust MPC algorithm 

that solves off-line all of the optimization problems can also 

be developed. This will reduce on-line computational time 

while ensuring the same level of control performance. 

APPENDICES 

Appendix A: Proof of Proposition 2. 

Lemma 1: [17] Suppose 0M  is a symmetric matrix 

while a  and b  are vectors with appropriate dimensions. 

Then, 
222

)
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1()1(
MMM

baba


   for any scalar 

0 .  

By substituting (4), 1 QP   into (7) and applying Lemma 

1, for any 0
1
 , we can see that (7) is satisfied if  
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2
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Q

kikxKikBikA  in 
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1)/( 
Q

kikx  be the maximum value of this term 

where 10   is a pre-specified scalar 

.)/()/(])()([
2

1

2

1  
QQ

kikxkikxKikBikA    (22) 

Substituting 1YQK , pre-multiplying by TQ , 

post-multiplying by Q  and applying the Schur complement 

[18]  leads to 
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From the convexity of the polytopic description, (23) is 

equivalent to (12). 

Consider the term 
2

1)()( 
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ikvikD  in (21), let   be 

the maximum value of this term 
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Applying the Schur complement leads to 
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From the convexity of the polytopic description, (25) is 

equivalent to (13).  

From (22), (24) and 1)/(
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kikx , (21) is equivalent to 
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The maximum allowable value of   can be calculated by 

solving 
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From (27), we obtain 22

1
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Appendix B: Proof of Proposition 3 

By defining h  as the hth row of the nu-dimensional 

identity matrix and applying the Cauchy-Schwarz inequality, 

we obtain 

   .)/()/(max
222
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i
ukikKxkikKx 


     (28) 

Substituting 1YQK  and applying 1)/(
2

1  Q
kikx  
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By applying the Schur complement, we can see that (29) is 

equivalent to (14). 

Appendix C: Proof of Proposition 4 

By defining 
r

  as the rth row of the ny-dimensional 

identity matrix and applying the Cauchy-Schwarz inequality, 

we obtain 
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From the convexity of the polytopic description, we can see 

that (34) is equivalent to (15). 
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where rC  is the rth row of C . From the convexity of the 

polytopic description, (36) can be written as (17). Thus, rΦ  

can be calculated by solving (16) subject to (17). 

From (32) and (35), (31) is equivalent to 
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The maximum allowable value of rΞ  can be calculated by 
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