
  

 

Abstract—In this paper, a model based control strategy has 

been developed for the wastewater treatment process. 

Interesting results have been reported by introducing the cyclic 

input i.e. dilution rate D in terms of productivity of the process.  

The effect of variable feed conditions which are associated with 

the wastewater treatment process has been studied. The effect 

of some tuning parameters (prediction horizon, control, horizon, 

sampling time etc.) is also studied. The controller performance 

for the three regions of sampling time is tested and the best case 

is reported. In first part, steady state analysis of the process has 

been studied and the optimum plant operating conditions 

reported. In the next phase periodic forced operation, has been 

implemented using non-linear model predictive control. The 

controller successfully, achieved the objective i.e. 10 % increase 

in productivity than the maximum with 29 % decrease in power 

consumption for pumping cost. 

 
Index Terms—Model base control, productivity, sampling 

time, power consumption, cyclic input.  

 

I. INTRODUCTION 

Water is the symbol of life on earth. The water cycle in 

nature and treatment of wastewater from both household and 

industry, are important environmentally. A number of 

processes have been developed for the larger productions and 

profitability in the modern chemical process industry. These 

processes have also contributed in increased waste 

production in general, and particularly the wastewater. To 

combat the increased wastewater loads on aquatic 

environment, scholars and researchers now are developing 

new processes and upgrading the existing systems for the 

mitigation of waste in water and treatment of wastewater 

[1]-[2]. The need of advanced control strategies is vital to 

make wastewater treatment process (WWTP) efficient and 

dynamic.  Wastewater treatment plants are combination of 

non-linear systems which observe frequent changes in flow 

and load along with the variation in influent. These plants 

have to be operated continuously taking care of strict 

environmental regulations. European Union and US 

environmental protection agency have enforced tight 

regulations, which resulted in increased operational costs and 

economic penalties to upgrade the existing wastewater 

treatment plants in the recent decade. There are two types of 

control structures for WWTP: the first one is process driven 

and the second one is model based. The model based 

approach has been improved a number of times, and the 
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improvements are related to the types of mathematical 

models which are state estimators. The advanced control 

strategies e.g. precise linearizing or adaptive control, robust 

control techniques etc.) can be applied using simplified 

models [3]. The level of complexity increases as complex 

models such as ASM1 is applied for the automatic control 

and such results are a few. [4]. A lot of people have carried 

out simulation studies for process control of WWTP using 

activated sludge process. The usual manipulated variables in 

these studies are dissolved oxygen concentration, internal 

recycle flow rate, sludge recycle flow rate, and external 

carbon dosing rate etc. [5]-[11]. Zhao and Skogestad 

proposed different control strategies (D→S, D→X, etc.) [12]. 

The effect of recycle has been reported by Sundstrom et al. 

[13]. Recent work on WWTP involves using genetic 

algorithms to minimize effluent concentration and operating 

cost [14]. Among the other advanced controllers, MPC 

algorithms are different, as a dynamic problem is solved 

on-line each control execution [15]. The ability of constraints 

handling, and superiority for processes having a large number 

of manipulated and controlled variables, MPC has become 

the most widely used control system in chemical industries 

[16]-[17]. Caraman et al. designed MPC using a neural 

network as an internal model of the process for the substrate 

concentration control in the effluent. Dissolved oxygen 

concentration was controlled using dilution rate as a 

manipulating variable [18]. Holenda et al. applied MPC 

strategy for dissolved oxygen control for two simulated case 

studies. The performance of controller was evaluated using 

systematic performance criteria during the simulations. 

Several tuning parameters of the controller (input weight, 

prediction horizon, sampling time) were also investigated 

[19]. For the low load values of BOD, O’Brien et al. 

implemented MPC for the activated sludge process in 

Lancaster, North England. Up to 25 % cost for aeration has 

been reduced over the previous control system by this way 

[20]. The molecular weight distribution of polyethylene 

product has been controlled using NLMPC. The predictive 

nature and dynamic optimization of NLMPC resulted in 

periodic operation of the process to achieve the desired 

objective [21]. Enhanced operation of reverse osmosis 

desalination process has been reported in [22], using NLMPC. 

Due to success of MPC on improving the performance of 

chemical processes as mentioned above, the technique will be 

adopted for WWTP. In a previous study enhanced operation 

of WWTP has been reported by periodic forced operation 

[23]. The objective here is to maintain the enhanced 

performance and study the effect of controller parameters 

specially the effect of sampling time on controller 

performance.  
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II. PROCESS MODEL  

A. Rector without Recycle 

The typical bioreactor for the wastewater treatment is 

shown in the Fig. 1 only the difference is the absence of 

clarifier. The dynamic model for the process is taken Zhao 

and Skogestad [12]. The assumptions for the model 

development are as follows 

1) The amount of biomass in influent is negligible. 

2) The process is aerobic, with sufficient quantity of 

oxygen to carry out the biological reactions. 

3) Cell maintenance and death is not taken into account 

for the dynamic model. 

The dynamic equations are given as follows: 

                                    ̇                                           (1) 

                                  ̇   (    )  
 

 
                             (2) 

Here r is the specific growth rate known as Monod reaction 

rate 

                                    
  

   
                                  (3) 

The nominal plant steady state operating condition is given 

in Table I for with-out recycle case. 

 
TABLE I: STEADY STATE PLANT OPERATING CONDITIONS 

D (1/h) Si (g/l) X (g/l) S  (g/l) μ (1/h) K (g/l) Y (g/g) 

0.17 1.0 0.38 0.05 0.5 0.09 0.3 

 

B. Reactor with Recycle 

Now the complete process i.e. the bioreactor with recycle 

is explained, from the dynamic model developed by 

Sundstrom et al. [13] with the following additional 

assumptions along with the those used in without recycle 

case: 

1) The substrate concentration in the recycle is equal to 

the substrate concentration in effluent, i.e. no 

reaction in settler. 

2) The dynamic of clarifier is neglected. 

3) No biomass in the effluent; sufficiently large surface 

area of settler. 

  ̇        (   )              (4) 

                     ̇   (    )  
  

 
                          (5) 

    
   (    )

(   )
                                (6)  

 
Fig. 1. Schematic of the process. 

 

Optimal Plant Operating Conditions: In such biological 

models, the process conditions are limited as with very low 

feed rate, the microorganisms will die out of starvation, due 

to unavailability of food nutrition to maintain the cell 

metabolism, on the other hand when feed is too high, the 

residence time decrease as much that there will no sufficient 

time for the biomass to grow which results in, no conversion 

of the substrate. This situation is known as ‘washout’. This 

happens only when no biomass recycle is used. To avoid 

washout, an upper bound on the feed flow rate is 

implemented as follows [13]: 

    (    ) (    (    )                   (7) 

where β= kd/µ and        . 

Recycle can improve the conversion as the reaction is 

autocatalytic but there are chances of performance 

deterioration, because recycle dilutes the substrate and 

lowers the residence time. The fractional conversion of input 

substrate conversion increases monotonically with both 

increasing recycle ratio (U) and recycled biomass 

concentration (Xr). It is also illustrated that conversion 

increases with recycle ratio only if Xr exceeds certain critical 

value (Xrc) which is given as follows [13]: 

                  
  

    
 

 

      
                     (8) 

Here    and β are defined as before, γ=µ/D and   =Xr/KY. 

For the present case Xrc is found to be 0.2286 g/l and Dc to be 

0.56 l/hr. So, based on the above mentioned situations, the 

optimum operating conditions of the reactor can be obtained 

that maximizes the substrate conversion and avoid washout 

by solving the following optimization problem: 

                                
    

     

  
                        (9) 

 ̇    

 ̇    

        

        

It is wise to add second term in the objective function to as 

maximum conversion occurs at high throughput. The (9) is 

solved using Matlab
®
 to get optimum conditions and 

recorded in Table II. The effect of varying U and Xr is 

interesting for the substrate conversion keeping D fixed at its 

optimal value listed in Table II. It is found that Xr must be 

kept above 0.2286 to ensure higher substrate conversion, and 

U will be selected between 0 and 1 for closed loop simulation 

by solving 4 and 5, the results are consistent with Sundstrom 

and Emad and Ajbar.  

 
TABLE II: OPTIMUM OPERATING CONDITIONS 

S (g/l) X (g/l) Xr (g/l) D 1/hr U  

0.315 0.283 0.4 6.6172 1.0 
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III. THE CONTROL OBJECTIVE AND IMPLEMENTATION 

The control of biological reactors is difficult due high 

non-linearity and limited number of control objectives. The 

usual control outputs are dissolved oxygen, substrate 

concentration in effluent. These are controlled directly or 

19]. In our case the 

controlled variable is productivity of the process i.e. 

Pr=D×(Si -S); there are two variables in one single controlled 

variable so the control of the process becomes more difficult.  

The maximum productivity i.e. 0.296 g/h occurs at D=0.39 

1/hr from steady state analysis, shown in Fig. 3. The purpose 

of periodic operation of the process is to exceed this 

maximum value of productivity which cannot be exceeded, 

conceptually under steady state operation. The average value 

of productivity can exceed the steady state maximum value 

by the virtue of nonlinear dynamics and the transition time of 

the process variables. In wastewater treatment processes load 

changes during different periods of time so variable feed rate 

can be of advantages as periodic operation can be utilized by 

the inherent nature of WWTP. The other advantage of 

periodic stepping of feed is the creation of sudden transition 

from one steady state to another. In this sudden changes may 

result in variable values for the productivity leading to an 

average value beyond the expected maximum. The common 

disturbances in the WWTP are feed flow rate, inlet substrate 

and biomass concentrations. In this case, the dilution rate will 

be used as the manipulated variable. The main objective here 

is to operate the process cyclically such that the average 

productivity exceeds the maximum productivity that can be 

achieved at steady state. The objective will be achieved using 

NLMPC. Furthermore, the effects of some the parameters of 

NLMPC on process performance will be studied. 

 

IV. NONLINEAR MPC ALGORITHM 

The structure of the MPC version developed by Ali and 

Zafiriou [15] that utilizes directly the nonlinear model for 

output prediction is used in this paper. A usual MPC 

formulation solves the following on-line optimization 

problem: 

   

  (  )    (       )
∑‖ ( (     )   (    )‖

 

 

   

 ∑‖   (      )‖
 

 

   

  

(10) 

Subject to 

 

    (  )                               (11) 

Numerical integration is used to calculate the predicted 

output, y over the prediction horizon P for nonlinear MPC by 

following state space equations 

  

  
  (     )                               (12) 

   ( )                                 (13) 

In discrete time fashion from tk  up to tk+P where x and y 

represent the states and the output of the model, respectively. 

The symbols || . || denotes the Euclidean norm, k is the 

sampling instant, Г and Λ are diagonal weight matrices while 

R = [r(k+1)  r(k+P)]
T
 is a vector of the desired output 

trajectory. ΔU (tk) = [Δu (tk) … Δu (tk+M-1)]
 T

 is a vector of M 

future changes of the manipulated variable vector u that are to 

be determined by the on-line optimization. The speed of the 

response and stabilization of feedback behavior is controlled 

by control horizon (M) and prediction horizon (P). 

are the controller parameters which are used to put weights 

on outputs and inputs. The objective function (Eq. 10) is 

solved on-line to determine the optimum value of U (tk). Only 

the current value of Δu, which is the first element of ΔU (tk), 

is implemented on the plant. At the next sampling instant, the 

whole procedure is repeated.  

A regular feed is incorporated on the output predictions, 

y(tk+1) through an additive disturbance term to compensate 

and eliminate modelling errors and steady state offset. 

Therefore, disturbance estimates are added to the output 

predictions to correct it. The latter is set equal to the 

difference between plant and model outputs at present time k 

as follows: 

 

 ( )    ( )   ( )                        (14) 

In order to reduce complexity of disturbance estimate, it is 

assumed constant over prediction horizon as there is lack of 

explicit means for predicting the disturbance. The simulation 

study will be carried out by transforming dilution rate D into 

sinusoidal function as follows for NLMPC in discrete time 

fashion 

 

 (  )           ( )                   (15) 

 

where Am is the period amplitude, tk is the sampling instant 

and β is the argument of the sin function that includes the 

cycle period p as follows: 

 

  
    

 
                                    (16) 

The, NLMPC will manipulate the feed flow rate in terms 

of D indirectly through regulating its input characteristics, i.e. 

the amplitude and period of oscillation. The controlled output 

embedded in (10) includes time average value of productivity. 

This output is defined as ratio to its corresponding steady 

state value as follows 

 (  )  
∫   ( )  
  
 

∫     ( )  
  
 

                             (17) 

 

In discrete time formulation, the numerical integration can 

be approximated by summation over the predefined 

simulation time. For future prediction, the model equations 

t 

= 0 to t = tk+P to estimate the average value for the controlled 

outputs at tk+P.  

 

V. RESULTS AND DISCUSSION 

Usually, DO have been the main, manipulated variable, to 
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indirectly through other parameters [18], [

Г and Λ 

can be numerically integrated over the future P horizon from 



  

control the WWTP, directly or indirectly, as the load changes 

is the inherent property of the WWTP.  Carman et al. [18] has 

studied, the substrate concentration in the effluent by 

controlling DO, using D as a manipulating variable. The aim 

was to maintain the substrate concentration below a certain 

value i.e. 20 mg/l. O’Brien presented the real time MPC 

implementation case study of Lancaster, North England. The 

control system strategy came up with the reduction of  over 

25% in power usage and a similar increase in plant efficiency. 

The aim of our study is to maximize the WWTP production 

with the periodic forced operation of WWTP feed flow. The 

effectiveness of the periodic operation can only be 

highlighted if we compare it with the non-periodic (normal) 

operation of the process. The proposed NLMPC algorithm 

will be implemented for the non-periodic operation of the 

process. In this case D is allowed to be in the range of 0-0.6 

1/hr for the simulation study. The values of controller 

parameters are determined by the trial and error approach. 

The values M = 1, P = 10, Λ= [0] and Г= [1], and sampling 

time of 0.5 hr were selected and simulation was run for 400 hr 

of plant operation. The steady state starting point was 

arbitrarily selected as D=0.3 1/hr, against which the value of 

productivity is 0.2635 g/hr. The closed loop response of the 

process is shown in Fig. 2. It is clear from Fig. 2 that 

controller was able to operate the process to get productivity 

greater than 1 (normalized value), but still it could not attain 

our goal i.e. 10 % increase in productivity over the maximum 

achievable value, when the process is carried out under a 

stable steady state. To clearly, demonstrate the ability of 

MPC to handle constraints on the input, the controller action 

started after 10 hr of plant operation. 

Fig. 2. Closed loop response Non-Periodic P=10, M=1. 

 

The reason to achieve the higher productivity even in the 

non-periodic case is due to constraints on input D i.e. ±0.3 

l/hr. The achievement of greater productivity is attained at the 

expense of more pumping cost, as clear from the Fig. 2, D 

went beyond 0.3 l/hr and ratio of average value of D to its 

starting value is 1.55, i.e. 55 % more feed rate is required to 

get increase in productivity. But this can be utilized by the 

variable feed flow rate of the WWTP [20]. Next NLMPC 

algorithm is implemented for the periodic operation. The 

start-up value for the process is D=0.3 1/hr, similar with the 

non-periodic case. The result is shown in Fig. 3. The 

controller was able to operate the plant sinusoidally, to 

achieve the desired objective i.e. 10 % increase in 

productivity than maximum productivity in case of steady 

state operation. 

 
Fig. 3. Closed loop response Periodic operation, P=4, M=1. 
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In fact Fig. 3 shows about 20% increase in productivity but 

this increase corresponds to arbitrary value of productivity 

0.2635 g/h. In Fig. 3, and onward Prss is the productivity 

under arbitrary steady state operating point i.e. D=0.3 1/h 

while Pr is the average value of productivity under periodic 

operation. The controller parameters for the periodic case are 

P=4, M=1, Λ= [0] and Г= [1]. The sampling time is selected 

as 0.5 hr for 400 hr of plant operation. The period per 

sampling time (α) is constrained between 3 and 10, which 

ensures 3 is the minimum value that allows for complete 

periodic behaviour within the given sampling time and 

simulation interval. The achievement in enhanced 

productivity is accomplished without any additional cost 

rather the ratio of mean value of D to the steady state starting 

value of D is 0.71 which shows 29 % decrease in power 

requirements for pumping. The enhancement of productivity 

is the result of multiple steady states and transition of one 

steady state to another. Different values of sampling time 

have been tried in this simulation study and best results are 

obtained using 0.5 hr in terms of decreased pumping cost, and 

tracking of set point although small sampling time results in 

better controller performance regarding set point tracking but 

have no big difference on (ratio of mean value of D to steady 

state starting value of D) and consequently the pumping cost. 

The value of sampling time is selected among 0.1, 0.5, and 2 

hr i.e. very small, moderate and high. The main case in this 

study is with sampling time (Ts=0.5 hr) and further modelling 

error and effect of external disturbance will be studied in 

detail for this case. Fig. 4 shows the controller performance 

for 0.1 hr sampling time. 

Fig. 4. Process closed loop response Ts=0.1 hr, P=4, M=1. 

 

The effect of large sampling time is also tested for the 

periodic operation. It is clear from Fig. 5 that controller 

performance is deteriorated for large sampling time. The 

controller could not follow the set point for 2 hr sampling 

time; the reason for this may be the dynamics of the process 

could not be utilized appropriately. Similar results were 

reported by [19] for two simulation cases that the 

performance of the controller can be considerably enhanced 

by decreasing the sampling time, but this improvement has 

no significant impact either on the whole activated sludge 

process, or the energy consumption used for the aeration 

process. The integral of absolute error was decreased by 40% 

by reducing the sampling time from 88 s to 20 s.  

Fig. 5. Closed loop response Periodic, Ts=2 hr, P=4, M=1. 
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However, in industrial practice very small sampling time is 

not preferred because the pump is actuated at higher 

frequency which may reduce the life of pump. The 

implementation of NLMPC has been successful for the 

periodic operation of the process in case of perfect model, but 

the developed model could have some uncertainties. 

Therefore, modelling errors effect on the controller 

performance will be studied using the same controller 

parameters and sampling time. Environmental conditions can 

vary in different parts of the world along with the load 

changes for the WWTP. Closed loop performance is shown 

in Fig. 6 for, 10% step change in Y which is yield coefficient, 

20% step change in maximum growth constant µ and 20% 

step change in saturation constant K. In the presence of 

modelling errors, the controller was able to achieve the 

desired set point and the effect of modelling error is marginal.  

 
Fig. 6. Process closed loop response modeling error, Ts=0.5 h. 

 

The variation in the feed load is the inherent property of 

the wastewater treatment process; feed flow rate varies 

during the different time intervals, i.e. day and night, working 

days and weekends, summer and winter etc, The regulatory 

performance of the NLMPC is also of importance for this 

simulation study. So, 25 % changes in load conditions will be 

studied as the load conditions are not always the same. The 

changes in the feed conditions are studied after 100 hr of the 

plant operation i.e. feed load increased 25 % after 100 hr of 

the plant operation. The NLMPC parameters are same as 

before.  

Fig. 7. Process Closed loop response Ts=0.5, P=4, M=1, with 25% increase in Si. 

 

The simulation result is shown in Fig. 7 for 400 hr of plant 

operation. The controller performance is satisfactory and it 

follows the set point after some time, and reaches the set 

point till the end of simulation and operates the process 

towards 10% increase in productivity in the presence of 

external disturbance.   

 

VI. CONCLUSION 

The performance of wastewater treatment process has been 

studied using non-linear model predictive control. The study 

is carried out using simulation based on a previously 

developed model. The optimal operating conditions of the 

process for maximum substrate consumption, avoiding 

washout situations have been determined using steady state 

optimization. The NLMPC algorithm managed to generate 

cyclic feed rate essential to steer the average productivity to a 

new value that is 10% higher than the steady state maximum 

value. The periodic forcing is imposed via online feedback 

control. The enhancement in terms of productivity of the 
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process has been observed. The increase in productivity has 

been achieved with lesser power consumption for pumping. 

The effect of sampling time and other tuning parameters of 

MPC has also been studied and best results are reported. The 

performance of the controller is also satisfactory in the 

presence of modeling error and under variable feed 

conditions. 
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