

 

Abstract—Artificial neural network (ANN) based model of 

transient simultaneous heat and mass transfer was used for the 

prediction of some thermo-physical during reconstitution of 

gari into thick paste. Temperature changes in the paste and 

moisture losses were recorded over a period of two hours while 

the granules are being reconstituted. Data on convective heat 

and mass transfer coefficients were obtained during 

reconstitution of gari into paste. In developing the ANN model, 

several configurations were evaluated. The mean square error 

(MSE), mean absolute error (MAE) and sum square error 

(SSE) were used to compare the performances of the various 

ANN configurations. The best ANN configuration included two 

hidden layers, with twenty-five neurons in each hidden layer 

was able to produce convective heat and mass transfer 

coefficients values with MSE, MAE and SSE of 0.000016, 

0.0029 and 0.0085%, respectively, and had R2 of 0.992. The 

effectiveness of the empirical results was compared with the 

developed ANN model and these are valid for heat and mass 

transfer data obtained for the reconstitution characteristics of 

gari paste. 

 

Index Terms—Artificial neural network (ANN), convective 

heat and mass transfer coefficient, Gari granules, modeling, 

reconstitution, thick paste.  

 

I. INTRODUCTION 
Gari is a dry granule made from roots of cassava 

(Manihot esculenta crantz) through a series of processing 

steps [1]. A versatile product, gari can be prepared in a 

variety of ways. It can be dispersed in cold water and 

consumed directly with sweeteners, groundnut and fish. 

The most widespread method of gari consumption is 

reconstituting it into a thick paste “eba” of varied 

consistency by pouring into a measured quantity of 

boiling water. The gari paste is consumed with soup or 

culinary dishes of various types by chewing or swallowed in 

morsels. It is popularly referred to as the common man’s 

bread [2]. Observations have shown that the heat and mass 

transfer operations plays a prominent role during gari 

reconstitution processing [3], [4]. The rate of heat transfer 
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depends on factors such as modes of heat transfer and 

temperature gradient between the two bodies. The basic 

modes of heat transfer are conduction, convection, 

evaporation and radiation with radiation being the least 

efficient and slowest of all, since the emissivity value could  

only be determined at relatively high temperature (above 

boiling temperature of water) [5], [6]. However, the 

moisture transfer which is the difference in concentration of 

constituents throughout a solution has to be distinguished 

from bulk conveying by some unit operations. The 

application of mass transfer theory to process design and 

analysis of these operations is a complex engineering 

subject in food processing operations [7]. 

The reconstitution of gari into thick paste is a 

complicated process involving simultaneous heat and mass 

transfer [8]. The heat content within the vessel increases 

paste internal temperature and then gelatinized the granules, 

changing its crystalline structure into an amorphous mass. 

Heat and mass transfer processes are among the most 

important physical phenomena that occur during processing 

of foods. As a consequence of these processes, several 

important variables such as temperature and moisture 

concentration within the structure of food depend on time as 

well as on the position inside the food system. Recent study 

as reported by [9] on the quantitative analysis of energy 

transport mechanisms in steady state natural and forced 

convection during reconstitution of gari into thick paste 

showed that texture and eating quality of the thick paste are 

highly influenced by cassava variety, age of maturity, 

temperature, ratio of the quantities of water to gari sample 

and effectiveness in the utilization of thermal energy 

required by the starch to swell or form a gel. [10] explained 

that the knowledge of thermo-physical properties of food 

stuff, such as, density, specific heat, thermal conductivity, 

thermal  and moisture diffusivity, heat and mass transfer 

coefficients of the material are fundamentally important in 

mathematical modeling, which is a based known physical 

principles in reducing the time and cost involved in 

experimentation. Mathematical modeling and computer-

based numerical analyses such as, Partial Differential 

Equation (PDE), Response Surface Methodology (RSM) 

have been extensively used for the design and optimization 

and validation of food processing operations [10]. Though, 

the existing mathematical models are either too simple and 

hence, deviate significantly from real processes or too 

complex to have any practical application. It is, thus, 

essential to develop an artificial neural networks (ANN) 

model which is capable of learning from examples through 

iteration, incorporates large numbers of variables, and 
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provides adequate and quick response to analyze the 

reconstitution characteristics of gari into thick paste. Such 

basic information is of greater value to designer of food 

equipment and food processors [11], [12]. 

The main objective of the work is to develop an Artificial 

neural network (ANN) based model of transient 

simultaneous heat and mass transfer for the prediction of 

convective heat and mass transfer coefficients as a function 

of gari reconstitution conditions (reconstitution 

temperatures and time, particle sizes of granule and air flow 

velocities). Data needed for development of the ANN model 

were obtained from our recent experimental work analysis 

of heat transfer during reconstitution of gari into paste as 

shown in Fig. 1. 

 
Fig. 1. A model for energy transport mechanism in a gari-water mixture 

during reconstitution at different temperatures [1]. 
 

II. METHODOLOGY 

An Artificial Neural Network (ANN) based model was 

developed using the method described by [13], [14] for the 

prediction of convective heat and mass transfer coefficients 

during reconstitution characteristics of gari into thick paste 

(Fig. 2). The development of ANN model involves three 

basic steps: the generation of (or compilation of available) 

data required for training/testing, the training/testing of the 

ANN model, and evaluation of the ANN configuration 

leading to the selection of an optimal configuration, and 

validation of the optimal ANN model with a data set not 

used in training before. The procedure used for the 

development of our ANN model is outlined below: 

A. Data Generation 

Many researchers have measured thermo-physical 

properties of foods such as thermal diffusivity, moisture 

diffusivity, thermal conductivity, by various techniques. 

Some comprehensive reviews on the data and prediction 

models of thermo-physical properties have been published 

by [15], [16]. Convective heat and mass transfer coefficients 

data have been presented and modeled as a function of 

particle size of granules, reconstitution temperatures and 

time and air flow velocities during reconstitution of gari 

characteristics into thick paste. The convective heat and 

mass transfer coefficients data for the reconstitution of gari 

into thick paste was obtained from experimental work [17], 

where particle size of granules, reconstitution temperatures 

and time and air flow velocities information were available. 

The dataset was developed for training (learning) and 

testing of various ANN models. The dataset were organized 

in four columns representing particle size of granules, 

reconstitution temperatures and time and air flow velocities 

with the parameters P, RT, Rt, V, respectively as 

independent (input) variables, while convective heat and 

mass transfer coefficients were respectively, represented by 

hc and hm as the dependent (output) variables. ANN models 

were developed and trained using these datasets. In each 

instance, the complete dataset was used to assess the 

prediction capability of a given model. 

 
Fig. 2. A flow chart for the prediction of convective heat and mass transfer 

coefficients.  

B. Training of ANN 

Several ANN models were trained using the experimental 

data set. The feed forward network structure with input, 

hidden layer(s) was used in this study as shown in Fig. 3. A 

commercial MATLAB software package [Version 7.10.0 

(R2010a) Neural Works Professional II/Plus (Neural Ware, 

Pittsburg, PA)] was employed. The input layer consisted of 

four (4) neurons which corresponded to reconstitution 

temperature and time, particle size and air flow velocities, 

while the output layers had two neurons representing the 

convective heat and mass transfer coefficients. The number 

of hidden layers and neurons within each hidden layer can 

be varied based on the complexity of the problem and data 

set. In this study, the number of hidden layers was varied 
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from 1 to 2. The neurons within each of these layers varied 

from 5 to 40 with increments of five. This resulted in a total 

of 16 networks. The optimal configuration was based upon 

minimizing the difference between the neural networks 

predicted values and the desired outputs. The data sets of 

9,072 cases from the experimental method were divided in 

two sets. The first set consisted of 7,258 (80%) cases for 

training/testing and 1,814 (20%) cases for validation, 

chosen randomly from the set of 9,072 cases. A back 

propagation network algorithm was utilized in model 

training. A log sigmoid transfer function was used for input 

layers while pure-line transfer function was used for output 

layers. The back propagation algorithm uses the supervised 

training technique where the network weights (Wi) and 

biases (b) are initialized randomly at the beginning of the 

training phases. For a given set of inputs to the network, the 

response to each neuron in the output layer is calculated and 

compared with the corresponding desired output response. 

The errors associated with desired output response are 

adjusted in the way that reduces these errors in each neuron 

from the output to the input layer. The error minimization 

process is achieved using gradient descent rule [18], [19]. 

To avoid the potential problem of over-training or 

memorization while employing feed forward algorithm, the 

option of saving the best configuration was selected where 

the network with the best result is saved during the selected 

long number of training cycles of 50,000 [20]-[21]. 

 
Fig. 3. Topological architectural structure of Artificial Neural Network for 

the prediction of convective heat and mass transfer coefficients 

P= Particle size, RT= Reconstitution temperature, Rt =Reconstitution time, 
V= Air flow velocity, hc= Convective heat transfer coefficient, hm= 

Convective mass transfer coefficient. 

C. Selection of Optimal Configuration 

The optimal configuration was selected from 16 ANN 

configurations based on minimizing three error measures 

used to assess the predictive performance of each 

configuration. The performances of the various ANN 

configurations were compared using mean square error 

(MSE), mean absolute error (MAE) and sum square error 

(SSE). The coefficient of determination R
2
, of the linear 

regression line between the predicted values from the neural 

network model and the desired output was also used as a 

measure of performance. The three different indicators of 

the model fit were defined in these equations as follows:  

MAE = ∑(Mcal- Mpred)                             (1) 

MSE = √ ∑ (Mcal- Mpred)/ Mcal                      (2) 

SSE =√ ∑ (Mcal- Mpred)
2
/N-1                       (3) 

where, 

Mcal = Desired/calculated output by experiment 

Mpred = Predicted value by the model 

N= No of data points 

 

III. RESULTS AND DISCUSSION 

Once a given ANN configuration was trained using the 

input data, its performance was evaluated with the same 

data set. The analysis was repeated several times. The ANN 

configuration (out of 16) that minimized the three error 

measures to determine its performance, and optimized R
2
, 

was selected as the optimum. The error measures associated 

with different ANN configurations for prediction of 

convective heat and mass transfer coefficients were 

presented in Table I. The best ANN configuration included 

two hidden layers with twenty-five neurons in each layer. 

The MSE, MAE and SSE for this optimal configuration 

with different neural networks were 0.000016, 0.0029 and 

0.0085%, respectively, and had R
2
 of 0.992. The simplest 

ANN model with one hidden layer and five neurons 

predicted convective heat and mass transfer coefficients 

with 0.00044% MSE, 0.0103% MAE and 0.22% SSE and 

had R
2
 of 0.974, as shown in Table II. The test error which 

determines the amount of weight changes during series of 

iterations to bring the predicted value within the acceptable 

range of the experimental values were adjusted within the 

hidden layers and neurons on trial basis [22], [23]. The test 

error of MSE, MAE and SSE values against samples 

iteration number for the optimum and simplest ANN 

configurations were depicted in (Fig. 4 and Fig. 5). The 

topology which gave the minimum error in the minimum 

number of iterations during the training of the ANN was 

selected. The preliminary trial of the test error indicated that 

higher learning rates produced poorly developed models. 

These observations were similar with the published work of 

[24]. 

To reveal the credibility of prediction from the optimal 

ANN, correlation between the predicted versus desired 

values were plotted in (Fig. 6 and Fig. 7). The results 

demonstrated very good agreement between the predicted 

and desired values of convective heat transfer coefficient 

(R
2
 = 0.992) and mass transfer coefficient (R

2
 = 0.991). The 

magnitude of the errors was about the same (~10%) as the 

variation was significant as compare to the original 

experimental data. However, the prediction accuracy did not 

increase with increasing network parameters. The optimal 

network with two hidden layers and twenty-five neurons in 

each hidden layer had network parameters of the same order 

of magnitude (80%) as the data points (126 cases). 
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Considering the inherent variation in the input data set, the 

predicted versus desired values of the simplest ANN 

configuration were plotted in (Fig. 8 and Fig. 9). The 

simplest ANN configuration between the predicted and 

desired values of convective heat transfer coefficient (R
2
 = 

0.975) and mass transfer coefficient (R
2
 = 0.973) were 

considered as a good predictor and this model is also 

recommended to users. The performance of the optimal 

neural network was validated using the remaining 20% data 

set (25 cases) not previously used in the training. 

However, [25]-[27] have developed ANN based model 

for thermal conductivity from product moisture content, 

particle size, temperature and bulk density for a cup cake. It 

had an SSE of 0.00011. The developed two equations were 

reported by [28]-[29], (with R² =0.98 and 0.99) based on 

product moisture content and two different ranges of 

temperatures to account for a variation in thermal 

conductivity of flat bread. However, the ANN model 

developed in this present study was able to capture the 

variation in convective heat and mass transfer coefficients 

with input variables of reconstitution temperature and time, 

particle size and air flow velocities. In addition, the 

developed ANN model can be useful in the determination of 

heat and mass transfer rate in various types of thick paste 

and wide range of physical conditions. 

 
TABLE I: NETWORK OF PARAMETERS ASSOCIATED WITH DIFFERENT 

ANN STRUCTURE 

# Neurons in each hidden layer # Weight (connecting including bias) 

5 11 

10 21 

15 31 

20 41 

25 51 

30 61 

35 71 

40 81 

5 17 

10 41 

15 73 

20 113 

25 161 

30 217 

35 281 

40 353 

 
TABLE II: ERROR PARAMETER IN THE PREDICTION OF CONVECTIVE HEAT 

AND MASS TRANSFER COEFFICIENTS WITH DIFFERENT NEURAL NETWORK 

CONFIGURATIONS 

3/1/2014 60

Hidden layer Neuron layer

in each hidden 

layer 

MSE (%) MAE (%) SSE (%) R2

1 5 0.00044 0.0103 0.22 0.974*

1 10 0.00170 0.024 0.91 0.882

1 15 0.00099 0.0177 0.52 0.905

1 20 0.00077 0.0140 0.40 0.899

1 25 0.00068 0.0123 0.35 0.896

1 30 0.0120 0.052 0.38 0.917

1 35 0.00140 0.021 0.70 0.891

1 40 0.00042 0.009 0.23 0.874

2 5 0.00240 0.031 1.28 0.885

2 10 0.000152 0.0086 0.08 0.970

2 15 0.000044 0.0049 0.023 0.910

2 20 0.000037 0.0043 0.019 0.897

2 25 0.000016 0.0029 0.0085 0.992*

2 30 0.000053 0.0036 0.0096 0.867

2 35 0.00760 0.086 0.06 0.935

2 40 0.00452 0.0096 0.047 0.863

MSE means square error; MAE means absolute error; SSE the sum square error and R2, the 

coefficient of determination 

 
Fig. 4. Variation of MSE, MAE and SSE test error training with samples 

number iteration for optimum ANN configuration. 

 
Fig. 5. Variation of MSE, MAE and SSE test error training with samples 

iteration number for simplest ANN configuration. 

 

 
Actual value hc (W/m2 oC) 

Fig. 6. Optimum ANN predicted values versus desired values of convective 
heat transfer coefficient with training and validation data set. 

 
Actual value hm (m/s) 

Fig. 7. Optimum ANN predicted values versus desired values of convective 

mass transfer coefficient with training and validation data set. 
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Actual value hc (W/m2 oC) 

Fig. 8. Simplest ANN predicted values versus desired values of convective 

heat transfer coefficient with training and validation data set 

 

 
Actual value hm (m/s) 

Fig. 9. Simplest ANN predicted values versus desired values of convective 

mass transfer coefficient with training and validation data set 

 

IV. CONCLUSION 

An ANN model was developed for estimating convective 

heat and mass transfer coefficients of gari samples 

reconstituted at 80
o
C and 100

o
C under a wide range of 

reconstitution conditions. The optimum ANN model 

consisted of two hidden layers and twenty five neurons in 

each hidden layer, with mean square error (MSE), means 

absolute error (MAE) and sum square error (SSE) of 

0.000016%, 0.0029% and 0.0085%, respectively and had R
2
 

of 0.992 for the reconstitution characteristics of gari into 

thick paste. This developed model is recommended and can 

be useful to estimate convective heat and mass transfer data 

for various types of thick paste products. These are 

important considerations for commercial production of gari 

paste and to obtain a consistent texture and eating quality of 

the thick paste, a desirable trend in fast food operations [30].  
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