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Abstract—The controller and the control valve are the 

workhorses of the process industry. The profitability, the 

reduction in energy consumption and raw material usage along 

with the increase in product quality are maintained by the 

process control hardware and software. However, control loops 

can suffer from poor performance due to ill tuned controllers 

or mostly due to problems associated with the pneumatic 

control valves as they are the only moving parts in the control 

loops. These oscillations will lead to increase energy 

consumption and increased wear and tear of equipment along 

with poor product quality. 

This paper proposes discrete data-driven models to simulate 

the stiction and oscillation of a control valve based on first 

order dynamics. The model is validated through experimental 

results obtained from a sticky valve test bed. Furthermore, a 

Convolution Neural Network is utilized successfully to identify 

the control valve stiction. Libraries for VP (Valve Position) vs. 

CO (Controller Output) plots were utilized to train the 

convolution neural network. 

 

Index Terms—Valve stiction, valve positioner, valve 

oscillation, control valve, control valve model, fault detection, 

convolution neural network. 

 

I. INTRODUCTION 

In today’s manufacturing operations in chemical and 

refining industries; optimal use of energy and raw materials 

along with safety is needed in a competitive environment 

where the process economics has to be taken into account. 

To achieve the above requirements, control loops are 

essential. A typical process plant will have many loops. 

However, control loops also suffer from poor 

performance which is mainly due to actuator non-linearities 

or processes. Disturbances and poor tuning of controller can 

also affect control loops. According to a study conducted by 

Desborough and Miller in 2002, the performance of two 

thirds of installed loops was not satisfactory. When a control 

loop has a performance issue, it is mainly in the form of 

control loop oscillation. About quarter of the oscillation 

problems is due to control valve stiction. This impacts both 

valve longevity and product quality [1]. 

The pneumatic control valve is typically the final control 

element of a process control loop [2]. Stiction is a common 
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fault of a control valve. Degradation in seal, over tightening 

of the packing nut, depletion of the lubricant, and a high 

working temperature of the metal are some of the causes of 

stiction [3]. Due to stiction, the control valve doesn’t 

respond to changes in the controller output; creating 

oscillations in the controller. High friction on the control 

valve stem inhibits the control valve movement. Once the 

friction force is overcome the valve will move. Some of the 

problems created by faulty valve are poor performance for 

advanced control schemes, deviation from set point, cost of 

production and mechanical wear and tear of the control 

valve [4]. 

The signature oscillation pattern for a control valve with 

stiction is the triangular shape on the controller output (CO, 

also known as output or OP) and square wave shape on the 

valve position (VP) [5], Fig. 1.  

 

 
Fig. 1. Control valve stiction common pattern. 

 

 
Fig. 2. Valve stiction plot VP vs. CO. adaptation from choudhury et al., 

(2005). 

 

The valve stiction can be described using the following 3 

steps: deadband +stickband, slip jump, and the moving 

phase, Fig. 2. Firstly, the valve behavior when it is 

stationary is represented with deadband and stickband even 

though the valve input is changing. Then, when there is a 

sudden release in potential energy which is stored in the 
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actuator chambers, there is a slip jump which is caused by 

the high static friction in the form of kinetic energy when 

the valve starts to move [6]. 

Two types of models have been used to model the stiction 

of a control valve: physical and data driven. The physical 

models are usually difficult to use due to the amount of 

variables required and higher computational times while 

data driven models usually are simple to use because they 

require just a few variables and reduced computational load 

[5]. Data driven models are the predominant models used. 

Choudhury et al. (2005), and Kano et al. (2004), used data 

driven models to simulate the valve stiction [6], [7].  

Various methods have been proposed to detect the stiction 

of a control valve; like cross correlation function based, 

limit cycle patterns based, nonlinearity detection based and 

waveform shape based [5], [8]-[11]. Detection methods 

based on the shape between CO and the VP have been 

proposed in the literature [5]. These methods rely on 

algorithms to detect certain characteristics of the CO vs. VP 

shape.  

Most of the data driven models in the literature are 

created from data provided by the industry. There is lack of 

research based on experiments designed to understand the 

stiction of a control valve along with the real time data 

obtained from them. Therefore, the first objective of this 

paper is to create a stiction fault on a control valve and use 

this information as a platform to build a data driven model. 

The second objective is to use a detection method based on 

VP vs. CO plots.  The VP vs. CO plots can be used as a tool, 

by inspecting the shape [8]. However, a chemical plant can 

have between a hundred to a thousand control loops [5].  

Consequently, a neural work will be utilized to recognize 

the stiction in VP vs OP plots. The use of neural network as 

a detection tool has been study previously [12]. Kowsalya et 

al. (2014) utilized a Feed Forward Neural Network to detect 

control valve faults. However the detection of the stiction 

fault was not investigated. [13], [14]. Furthermore, 

Venceslau et al. (2012) used a neural network to detect 

stiction [15]. PV and CO were used as inputs variables for 

the model. In this study, a Convolution Neural Network will 

be evaluated as a detection tool for stiction. 

 

II. EXPERIMENTAL SETUP AND METHODOLOGY 

This section discusses the experimental setup used in this 

study; the methodology for the conduction of the experiment 

is with the valve in normal condition and with the valve in 

stiction. The data obtained from this experiment is recorded 

and analyzed by the ABB data manager pro. Software. 

A. Experiment Setup 

The experiment setup consists of a control valve with a 

valve positioner, differential flow meter, controller, recorder, 

pump and tank is shown in Fig. 3. The water flow is 

controlled with a feedback control loop. The control valve 

position is regulated by the positioner, where the controller 

output serves as a set point. The following variables are 

recorded: flow (PV), flow set point (SP), valve position (VP) 

and controller output (CO). The recorded data is transferred 

to Excel spreadsheets. The PI gain (Kc) and integral (Ti ) 

were calculated by the auto tune feature of the ABB CM30 

controller. The values for Kc and Ti are shown on Table I. 

 

 
Fig. 3. Experiment setup.  

 

B. Experiment Methodology and Results 

Two experiments were conducted: operation of the 

control valve at normal condition and with stiction. 

At normal condition, the water flow was controlled at the 

set point of 20%, Fig. 4. There was not a significant 

difference between the CO and the VP, therefore the 

positioner controlled the valve position. Consequently, the 

control valve didn’t show signs of stiction. 

 

 
Fig. 4. Control valve normal operation. 

 

To create the fault on the control valve, additional 

packing was utilized, and the packing nut was tightened. 

The water flow set point was set at 24%, Fig. 5. The PV 

fluctuated from 24% to 22.5 % and a significant difference 

between the CO and the VP was observed, therefore the 

positioner didn’t control the valve position. The shape of 

CO signal is triangular and the shape of the VP is square. 

Therefore, the fault can be classified as stiction. This is the 

case of stiction with overshoot [5]. 

 
Fig. 5. Control valve with stiction.  

 

Although this is a stiction case, it is not a common pattern. 

The valve is stuck at 8.5% for 12s and at 6.5% for 3s. In a 

typical pattern, there is not a significant change between the 

VP position times. Also, the slope of the CO triangular 

shape is not constant.  The reason is that on side of the PV 

oscillation occurs at the setpoint, where the error between 
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the setpoint and the PV is close to 0. At this point the CO 

reaches steady state and the dCO/dt is approximately 0. 

However, the difference between the CO and VP is at the 

highest. The positioner increases the pressure to reach the 

set point, the CO. Then the stiction friction force is 

overcome and moves the control valve position in the 

opposite direction, where it get stuck again.  

Furthermore, the VP and the PV variables behave like 

first order systems. Therefore, the PV and VP can be 

simulated with first order equations [16], [17]. 

 

III. CONTROL VALVE MODELING AND VALIDATION 

This section discusses the development of the stiction and 

oscillation models. It presents a summary of the equations 

used in each model. Finally, the validation of the stiction 

model with experimental data is described. 

A. Valve Stiction Modeling 

The VP is simulated with a first order equation. The input 

for the VP equation is a square wave, Fig. 6, where D1 and 

D2 represent the positions where the valve is stuck.  

 

 
Fig. 6. Forcing function for model. 

 

The flow variable is simulated with a first order equation. 

A PID controller equation is used to simulate the CO. The 

following equations in the discrete form ([18], [19]) were 

used in Excel to model the stiction fault with t=1and t=nt. 
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where valve is the valve process time constant in seconds, 

Kvalve is the valve gain in %VP/%InputFF, InputFF is the 

square wave input in %, flow is the flow process time 

constant in seconds, Kflow is the flow gain in %MVflow/%VP, 

Kc is the controller gain in %CO/%MVflow, I is the 

controller integral time in seconds and Cs is the controller 

bias in %. Fig. 7 shows the output graph of the valve stiction 

simulation as described above. 

The square wave forcing function can be linked to CO, 

where the Inputff, can be expressed as 

 

           
   

  
                                        (5) 

where K1 is the square wave magnitude constant in s and K2 

is the square wave position constant in %. Note in Fig. 1, the 

triangular shaped controller output CO changes slope 

periodically. As a result, the derivative of CO forms a pulse 

function, i.e., a square wave.   

 

 
Fig. 7. Control valve stiction simulation. 

 

B. Valve Oscillation Modeling  

The input of this model is the process set point. The flow 

and valve position variables are simulated with first order 

equations, Fig. 8. The oscillation fault was created by 

decreasing the integral time in the PID controller. This fault 

can be described as disturbance in the process created by 

quick changes of the CO where the process eventually 

reaches the set point. The following equations in the discrete 

form were used in Excel to model the oscillation fault. 
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Fig. 8. Control valve oscillation simulation. 

 

C. Validation of the Stiction Model 

The model was validated with the experiment data. The 

VP from the experiment was used as the input variable to 

generate the CO and PV variables. Table I summarizes the 

parameters used in the model and the experiment. 

 
TABLE I: EXPERIMENT VS. MODEL PARAMETERS 

Parameters Exp. 

Values 

Model 

Values 

Kflow 3  2.85 

flow 5 s 1s 

sp 23.3 % 23.3% 

Cs N/A 7.3% 

Kc .13  .13 

Ti 9 s 9s 
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The model can replicate the CO variable, but it can also 

reproduce the patterns of the PV even though there are some 

discrepancies, Fig. 9. 

 

 
Fig. 9. Control valve stiction model validation. 

 

IV. FAULT DETECTION USING CONVOLUTION NEURAL 

NETWORK (CNN) 

This section describes the method used to identify the 

control valve faults and the results. 

A. Detection 

A CNN was selected over other neural networks as a 

detection tool due to the superior accuracy on image 

classification on big datasets [20]. 

A VP vs CO (i.e., OP) library of normalized plots with 

different cases of stiction and oscillation was created. The 

VP vs. CO plots were created with simulated data. This 

library was utilized to train an existing Convolution Neural 

Network (CNN). Once the CNN was trained, it was used to 

identify the faults of the control valve.  

The CNN used in this study is GoogLeNet [21], [22]. 

This is one of the 13 pretrained CNN options that MATLAB 

offers. The CNN was tested with VP vs CO plots from 

simulated and experiment data.  The CNN identified the 

oscillation and stiction faults. The predicted probability 

ranges from 96.8 to 68.3%, Fig. 10 to Fig .14.  

 

 
Fig. 10. Simulated fault for stiction. 

 

 
Fig. 11. Simulated fault for oscillation. 

 
Fig. 12. Stiction fault from experiment, example 1. 

 

 
Fig. 13. Stiction fault from experiment, example 2. 

 

 
Fig. 14. Stiction fault from experiment, example 3. 

 

V. CONCLUSIONS 

The control valve stiction experiment shows that the 

valve position and the PV behave like first order systems as 

evidenced by the simulations with first order equations. 

Furthermore, the stiction fault validation results show that 

the PV variable serves as a link between the CO and VP 

modeling.  To detect the control valve faults including 

stiction and oscillation, a CNN was utilized. The CNN was 

trained with simulated VP v. CO plots. The CNN was tested 

with simulated and experimental data and successfully 

identified the control valve faults.  

Future research should be devoted to the development of 

VP vs. CO plots for control valve faults as stiction, dead 

band, hysteresis and oscillations that create a difference 

between VP and CO. These libraries can be created initially 

from a simulation model but experimental data needs to be 

added to enhance them. The information provide by this 

type of research will help better train a CNN and therefore 

build a robust detection tool. 
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