
  

  

Abstract—Kalina cycle is an idealized thermodynamic cycle 

that generates power using a binary mixture as a working 

substance. Depending on the application, the Kalina Cycle 

increase power plant efficiency by 10% to 50% over the 

Organic Rankine Cycle. The relative advantage of the Kalina 

cycle rises when operating temperatures are reduced and 

Kalina cycle is generating by mixture. Kalina cycle is identified 

as a bottoming cycle that demonstrates improved efficiency. 

Ammonia-water mixture is high-energy than a single 

component. Producing electricity of the inlet turbine and the 

temperature of the separator increase the performance of the 

cycle. It may be more effective to use the Kalina cycle for 

concentrating renewable energy sources such as solar power 

plants that use direct steam production to enhance heat 

exchange efficiency, and therefore, increase total system 

performance. This research attempts to build a Kalina cycle 

system, which will help to transform the natural source from 

sunlight to energy. Python open-source software has been used 

to design and implement the Kalina cycle. The suggested cycles 

include various types of solar collectors and extra heat recovery 

technologies. Systems uses a medium temperature heat source 

to analyze the Kalina cycle for different system characteristics 

and to conduct parametric research to determine which input 

temperature, ammonia concentrations, separator temperatures 

yield the optimal energy production. The Kalina cycle of binary 

plants generates 30% to 50 % more power for a provided heat 

source. With the Kalina cycle as a bottoming cycle for a 

cogeneration plant, the exhaust gas temperature has been 

reduced from 427 K to 350 K, which reduces the environmental 

impact.  

 
Index Terms—Kalina, organic, renewables, solar.  

 

I. INTRODUCTION 

In the production of energy and cogeneration, the 

electricity market is growing at the same time. Conventional 

oils are quickly depleting. Efforts are being made to identify 

alternative fuels that will satisfy the growing need for oil. 

Various sources of non-conventional resources, such as 

geothermal energy, solar thermal energy, wind energy, and 

biomass are now being used to address emission challenge 

and increasing demand [1], [2]. Low-grade heat energy at low 

temperatures will not only offset the energy crisis we face; it 

can also simultaneously resolve the problem of global 

pollution by stopping excess heat from discharging into the 

atmosphere. Rankine Cycle is the first candidate to use this 

low-temperature heat capacity since the Rankine Cycle has 

the maximum performance of the traditional power 

conversion cycle [3], [4]. But the Rankine cycle has inferior 
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performance for operation at low temperatures. Other cycles 

have been suggested to derive power from this 

low-temperature waste heat, namely the Organic Rankine 

Cycle (ORC) and the Kalina Cycle. Kalina suggested a 

modern thermodynamic power cycle named the Kalina Cycle 

to use low-temperature heat to pursue the use of a binary 

mixture (ammonia-water) to absorb low-temperature heat 

and to use excess heat effectively [5]–[7]. For 

low-temperature heat recovery over other periods, the binary 

mixture's non-azeotropic action renders this cycle very 

formidable [8]. This paper carries out a thermodynamic study 

of this cycle for low-temperature applications. The Kalina 

cycle is known as one of the alternatives of the organic 

Rankine cycle. The Kalina method allows it more common to 

be built and applied with the convenience and equivalent 

components of the mixtures and its environmentally 

sustainable companion. To transform the natural supply from 

the sun to productive function, this work suggests a modern, 

optimized Kalina cycle.  

 

II. METHODOLOGY 

Energy consumption rates is growing day by day due to a 

growing population at a high pace. Thus, along with 

high-grade heat, low-grade heat conversion has received 

significant attention in the recent past. Solar thermal is a 

possible source of low-grade heat. Various technologies have 

been documented in the past to turn low-grade heat into 

electricity, as well as the Kalina cycle [9]. 

The new Kalina cycle is designed to produce binary vapor 

with the aid of a solar collector (Fig. 1). In the first stage, the 

superheated ammonia water mixture vapor spreads into the 

binary mixing turbine producing electricity [10]. The 

expanded mixture with a higher concentration of ammonia is 

condensed in the condenser after partial condensation at the 

heat exchanger level. The electricity supplied to the heat 

exchangers (HE1, HE2 and HE3) has been energized by 

additional moving energy from renewable heating systems. 

Increased output results against increased turbine flow. 

Partial evaporation is improved in an evaporator with a 

renewable energy source. The Parabolic Concentration 

Collector and the Flat Plate Collector have been designed to 

provide an effective heat source. The independent liquid 

concentration of the separator drum is moved to Mixer and 

Tank. The mass and energy balance equations for different 

components are given below. 
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 Fig. 1. New Kalina cycle with 3 solar system. 
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III. RESULTS AND DISCUSSION 

Plant and cycle characterization and the influence of 

concentration on plant efficiency are presented here. Each 

one of the outcomes was tallied and analyzed visually. 

A. Effect for Inlet Temperature and Ammonia 

Concentration of Turbine 

The Fig. 2 shows the impacts of turbine inlet temperature 

and ammonia concentration of condensers on cycle 

efficiency. The system performance optimizes at the 50-bar 

turbine input pressure with an optimal concentration of 

ammonia at condenser at 0.87. With an increase in ammonia 

concentration at condenser from 0.80 to 0.90, the efficiency 

of the suggested binary mixture cycle improves for the 

proposed Kalina system. 
                     

 
                   

Fig. 2. The cycle efficiency with the impact of ammonia concentration at 

turbine exhaust condenser at 50 bar inlet pressure. 

 

Fig. 3 shows that back work ratio was affected by turbine 

inlet temperature and ammonia concentration. It shows that 

the ammonia concentration 0.83-0.87 gives inlet temperature 

in the range 350-400 K and back work ratio in the range 

0.1-0.2. But when the turbine inlet temperature at 700 K and 

ammonia concentration at 0.82 gives back work ratio to 1.2. 

 

 
 

Fig. 3. Back Work Ratio with the impact of ammonia concentration and 

turbine inlet temperature at 50 bar inlet pressure. 

 

IV. EFFECT FOR OUTLET TEMPERATURE AND AMMONIA 

CONCENTRATION OF TURBINE  

The relationship between turbine outlet pressure and outlet 

temperature and the effects on cycle efficiency and ammonia 

concentration in condensers is investigated. With an ideal 

concentration of ammonia at a condenser at 0.87, the system's 

performance is optimized at 50 bar turbine output pressure 

with an optimal concentration of ammonia. It is found that 

increasing the ammonia content at condenser from 0.80 to 

0.90 percent results in an improvement in the efficiency of 

the proposed binary mixture cycle for the Kalina system. Fig. 

4 shows that outlet temperature of turbine and ammonia 

concentration severely influence the Kalina cycle efficiency. 

We can see that 320 K-480 K of outlet temperature with 

0.82-0.88 ammonia concentration increase the cycle 

efficiency until 470 K. The cycle efficiency is high (55%) 

while the turbine outlet temperature is at 470 K. The Fig. 5 

shows the effect of ammonia concentration and turbine outlet 

temperature on back work ratio. 

 

 
Fig. 4. KPS Kalina Cycle efficiency with the impact ammonia concentration 

at turbine exhaust turbine at 50 bar outlet pressure. 

 

 
 

Fig. 5. KPS back work ratio with the impact of ammonia concentration at 

turbine exhaust condenser at 50 bar Outlet pressure. 

 

V. EFFECT FOR INLET TEMPERATURE AND AMMONIA 

CONCENTRATION OF CONDENSER  

All instances show a variation in exergy losses in the 

Kalina cycle components throughout a range of ammonia 

concentration at condenser and separator temperatures, with 

the highest exergy loss at the turbine and lowest exergy losses 

at condensers and separators. Because of the increased hot 

source temperature, the losses in the turbine are greater. 

When the ammonia concentration is high and the condenser 

and separator inlet temperatures are high, the losses are 

reduced. According to a survey of the literature, most power 

systems suffer from greater exegetic loss in high temperature 

components.  

Table I shows the effects of condenser inlet temperature 

and ammonia concentration on plant efficiencies. Results 

show that solar plant 1 produce lower efficiency than other 

solar plants in a particular temperature.  The solar plant 3 

produces more efficiency with ammonia concentration 
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between 0.80-0.94.                        
 

TABLE I:  CONDENSER INLET TEMPERATURES EFFECT ON SOLAR PLANT 

EFFICIENCY 

Inlet 

Temperature 

of Condenser 

(K) 

Condenser 

ammonia 

concen- 

tration  

Solar Plant 

1 efficiency 

(%) 

Solar Plant 

2 efficiency 

(%) 

Solar 

Plant 3 

efficiency 

(%) 

303 0.89 12.39 14.87 18.59 

305.22 0.89 25.05 30.06 37.57 

307.44 0.90 31.32 37.58 46.98 

309.67 0.90 31.46 37.75 47.19 

311.88 0.91 31.45 37.74 47.18 

314.11 0.91 31.40 37.68 47.10 

316.33 0.92 31.35 37.62 47.03 

320.77 0.92 31.31 37.57 46.97 

        

VI. CONCLUSION 

A redesigned power production configuration is suggested 

to use more solar energy with additional collector and 

thermodynamically analyzed from the perspective of first law 

and second law analysis. Parametric research is performed, 

revealing important empirical relationships in performance 

development of the suggested system. It is found that when 

the temperature to the separator rises, the cycle generates 

more vapor, increasing ammonia concentration to the turbine, 

resulting in improved performance. However, the optimal 

condenser evaporator outlet temperature values from turbine 

and ammonia concentration vary. Results showed that energy 

efficiency improves at 0.95 ammonia concentration at 

condenser. The parametric research also indicates the 

improved condenser output minimizes at 85°C evaporator 

outlet temperature and 0.9 ammonia concentration. Having 

determined the parameters, the suggested system maximized 

plant efficiencies at low turbine outlet temperature and low 

turbine input temperature. Exergy degradation in turbine 

peaks with 60% of the proposed power cycle and reduces 

with higher ammonia concentration at a condenser of 0.94 

and separator inlet temperature of 80°C with 30%. Using 

extra solar recovery system requires less input for optimum 

performance. In researching new system performance, the 

difficulty is to find the diversity of parameters. The key 

parameters are ammonia, temperature, and pressure. 
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