
 

Abstract—Most of the existing models for describing black 

liquor (BL) viscosity behaviours are applicable over limited 

ranges of process conditions, whereas BL exhibits varied 

viscosity behaviours, Newtonian and nonNewtonian, over a 

wide range of process conditions. These limited-range models, 

resulting from different bases, may suffer predictions 

continuity over such wide ranges of conditions. In this paper, 

attempt was made to jointly model the Newtonian and 

nonNewtonian viscosity behaviours of literature liquor using 

artificial neural network (ANN) paradigm. A generalized 

multilayer feedforward network with 7 hidden neurons and 1 

output neuron, having R2=1.0 and maximum absolute relative 

error of ~8% between the actual and predicted data was 

obtained. Although a model with a higher accuracy is desirable, 

the proposed single network seems to be a reasonable 

alternative to the use of the limited-range multiple models for 

the purposes of describing black liquor viscosity behaviour 

over a wide range of practical conditions.  
 

Index Terms—Artificial neural network, black liquor, 

Newtonian, NonNewtonian, viscosity. 

 

I. INTRODUCTION 

Kraft black liquor (BL) is a by-product of kraft pulping 

process. The liquor viscosity plays significant roles in the 

performance of kraft recovery facilities in a pulp and paper 

mill. Its viscosity affects the heat transfer in the evaporation 

units, capacity of pumps and size of black liquor droplets 

being sprayed in the recovery boiler (RB) [1], [2]. Black 

liquor exhibits varied viscosity behaviours over a wide 

range of process conditions. It is approximately Newtonian 

at low solids concentrations (SCs) but shows nonNewtonian 

behaviour at high SCs [3]. Under certain circumstances, it 

shows Newtonian behaviour at high SCs and exhibits 

nonNewtonian behaviour at low SCs [4]. Availability of 

accurate and reliable models which are capable of 

describing the viscosity behaviours of black liquor over a 

wide range of process conditions is therefore essential for 

the improvement in the design, analysis and operation of 

kraft recovery facilities.  

Majority of the literature models for predicting black 
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liquor viscosity are applicable at limited ranges of process 

conditions. The study of black liquor viscosity behaviours 

over a wide range of process conditions may therefore 

require the use of multiple models. Unfortunately, this may 

pose the challenge of predictions continuity, as individual 

limited-range models were developed from different bases. 

A promising approach would be to use a single model 

derived from a wide range of process conditions. The low-

shear Newtonian viscosity functional models reported in 

[5]-[8] and which are applicable at all solids concentrations 

seem to be promising. Unfortunately, the ranges of 

applicable temperatures are unspecified for the models 

reported in [5], [6]. Vakkilainen’s [8] model is applicable 

over only a very narrow range of temperatures close to 

actual operating conditions. Ghosh’s [7] model has been 

shown to be ineffective for predicting black liquor viscosity 

even at limited low-solids concentrations [9]. The recently 

proposed artificial neural network (ANN)-based model for 

predicting the viscosity of black liquor is applicable over a 

wide range of process conditions [10].  However, it is 

limited to Newtonian black liquors. Zaman and Fricke [11], 

[12] proposed two models(modified Cross and Carreau-

Yasuda) for predicting the viscosity of nonNewtonian 

softwood kraft black liquor. One of the downsides of these 

models is that they are only applicable at high solids 

concentrations (SC>50%). Under certain circumstances, 

black liquor shows Newtonian behaviour at high SCs and 

exhibits nonNewtonian behaviour at low SCs [4]. It is 

therefore essential to have a model which is capable of 

jointly describing the Newtonian and nonNewtonian 

behaviour of black liquor over a wide range of process 

conditions. Hitherto, such model has not been reported in 

the literature. In this paper, artificial neural network 

paradigm was attempted to jointly model the Newtonian and 

nonNewtonian behaviour of black liquor over a wide range 

of process conditions. The predictive and generalization 

capacities of the developed models were tested using 

limited experimental data and response surface 

methodology (RSM). 

 

II. BLACK LIQUOR VISCOSITY MODELING 

A. Data Collection 

The black liquor viscosity data utilized for the 

development of ANN-based models described in this paper 

were obtained from the literature (see Fig. 2 in [4]). The 

detailed step by step approaches adopted to measure the 

viscosities of the liquor samples, as a function of its 

influencing variables have been published in [4]. The data 
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ranges are as follows: solids concentration (SC), ~25-70%, 

temperature (T), 0-115
0
C, shear rate, ~10-2000s

-1
 and 

viscosity, ~1-6300mPa.s. Since solids concentration of the 

weak black liquor is usually around 14-18% when it leaves 

the digester or the pulping unit [13], black liquor viscosity 

data at solids concentrations < 25% would be required to 

develop models that cover all practical ranges of solids 

concentration.  Therefore, viscosity data for black liquor at 

solids concentration of 0% (100% pure water) were 

obtained over 
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the temperature range 0-160 
o
C from the database of the 

physical properties of water provided by ThermExcel [14].  

The water viscosity (
w ) data were then fitted to the 

model given in (1), where z= (T-80)/46.62; T=temperature 

(
0
C). The performance measures of

w are: R
2
=1.0 and 

MARE (maximum absolute relative error) =0.71%. 

Equation (1) was used to estimate the viscosity of water (or 

black liquor at solids concentration=0%) where necessary.  

At low solids concentrations (<=50%), black liquor 

traditionally exhibits Newtonian behaviour. The liquor 

considered in this study, up to around 51% and at all 

temperatures, is a Newtonian or nearly Newtonian fluid. At 

higher solids concentrations (> 51%), it shows shear-

thinning behaviour at some process conditions. The 

variations of the viscosity of a shear-thinning fluid will 

often reach a limiting value at very low shear rates or at 

high shear rates where it behaves typically as Newtonian 

fluid. The limiting viscosity at low shear rates is termed 

zero shear viscosity,
   while the limiting viscosity at very 

high shear rates is termed infinite shear viscosity, 
  [15]. 

In order to obtain complete data for the development of a 

single model which is capable of jointly describing the 

Newtonian and nonNewtonian behaviours of black liquor 

over a wide range of process conditions, the following steps 

were taken. First, the liquor nonNewtonian viscosities were 

approximated by their Newtonian equivalents at low shear 

rates (shear rate ~=0). Cross model [16] given in (2) was 

used to estimate zero shear viscosity of black liquor (see 

[17]) from the viscosity-shear rate data obtained at the 

easily measurable shear rates.   is the shear rate (s
-1

), C  is 

the Cross time constant(s) and m is the   dimensionless 

Cross rate constant  [18]. 

                       =  +

 mC





 

1

0                             (2)                                                         

In practice, 
 may not be attained and so is deemed to 

be negligible when compared with zero-shear viscosity and 

viscosities at other measurable shear rates. Setting 
 =0.0 

in (2) and using the nonlinear curve-fitting tools in the 

MATLAB
®
 optimization toolbox, 

 ranging from 

~12360mPa.s to 12780mPa.s were obtained from the 

available shear-dependent viscosity data of the chosen 

literature liquor. Secondly, the zero-shear viscosity data 

obtained above were combined with the average viscosity 

data where the liquor exhibits pure Newtonian or near-

Newtonian behaviour and, the viscosities of pure water 

(black liquor at 0% solids concentration) to obtain 

Newtonian viscosity data over a wide range of process 

conditions. It should be noted that in the ANN-based 

modelling, the input and response variables data are 

normally pre-processed so that all data fall within [-1, 1] or 

[0, 1] to enhance neural network training [19], [20]. When 

the pattern in the data is exponential or in the power law 

form, it is advisable that they are log-transformed before 

applying the mapping or scaling functions [19]. 

Consequently, at zero-shear conditions i.e. where shear rate 

tends to zero, log (0) is undefined for the scaling process 

mentioned above. In order to be able to define low-shear 

conditions for ANN modelling, it was assumed that shear 

rate(s
-1

) of 10
-4 

~=0. So, low shear rate was set equal to 10
-

4
s

-1
. Finally, the Newtonian viscosity data (original, pure 

water and zero-shear) obtained above were combined with 

the original shear-dependent data of the literature liquor to 

obtain combined Newtonian and nonNewtonian viscosity 

data comprising of solids concentration, 0-70%, temperature, 

0-115
o
C, shear rate, ~0.0001-2000s

-1
, and viscosity, ~1-

12780mPa.s. Flowing black liquors typically have shear 

rates of 30-4000 s
-1

 [5] and Chhabra and Richardson [21] 

have shown that many materials attain 
0  at shear rates   

0.01 s
-1

. Therefore taking 10
-4

 s
-1

 as the low shear rate value 

is justified for black liquor processing.  

 
Fig. 1. A simplified model of a typical 2-layer FF ANN. 

B. Black Liquor Viscosity Model Using Artificial Neural 

Network (ANN) Paradigm  

ANN is the generalization of the mathematical model of a 

biological nervous system [22]. It is a highly parallel system 

that processes information through modifiable weights, 

thresholds/biases, and mathematical transfer functions [23]. 

Different architectures for, and training algorithms 

associated with ANNs are well discussed in the literature 

(e.g. [20]-[25]). This paper describes only the application of 

multi-layer (ML) feed-forward (FF) ANN to the modelling 

of BL viscosity, as a function of its chosen influencing 

variables-solids concentration, temperature and shear rate. 

In the FF networks, the signal flow is from the input to the 

output units, strictly in a feed-forward direction. The data 

processing can extend over one or several layers (ML) of 

neurons, but no feedback connections are present [22]. A 

simplified model of a typical 2-layer FF ANN is given in 

Fig. 1. In this work, the hyperbolic tangent sigmoid transfer 
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function and a linear transfer function, as shown in Fig. 2, 

were used in the hidden and output neurons, respectively.   

In this paper, a network with 1 hidden layer (having L 

neurons) and 1 output layer (having M neurons) is denoted 

as an [L, M] network while a network with 2 hidden layers 

(having K neurons in the first hidden layer and L neurons in 

the second hidden layer) and 1 output layer (having M 

neurons) is denoted as a [K, L, M] network. 

 

 
Fig. 2. Transfer functions used in this work. 

C. ANN Training and the Criteria for the Evaluation of 

the Goodness of the Resulting Networks 

The inputs to the networks are solids concentration, 

temperature and shear rate while the only output is viscosity. 

Prior to the network’s training, the input and the output 

variables were pre-processed to fall in the range [-1, 1] (see 

[26]). The solids concentration was expressed in a fractional 

form (0-1) while temperature was expressed in Kelvin. The 

shear rate (s
-1

) and the viscosity (mPa.s) were log-

transformed prior to being scaled to within [-1, 1]. The steps 

described in [26] for training ANN via Bayesian 

regularization algorithm available in the MATLAB
(R)

 neural 

network toolbox, were followed to arrive at the networks 

reported in this paper. The typical criteria for the evaluation 

of the goodness of a Bayesian-trained network include 

Marquardt adjustment parameter (MU), the effective 

number of parameters per total number of tunable 

parameters (#), sum of squared weights (SSW), and the 

network prediction error. It is important to train the network 

until the network parameters converge. Given a sufficient 

training epochs (depending on the complexity of the 

problem) e.g. 5000, a true convergence is attained when 

maximum MU is reached. Convergence is also attained 

when #, SSW, and the network prediction error remains 

fairly constant over a significant number of iterations [19]. 

In addition to monitoring the above-stated indices, the 

goodness of the ANNs developed in this study were 

examined based on two other performance criteria namely 

coefficient of determination, R
2
 and maximum absolute 

relative error (MARE). R
2
 is the square of correlation 

coefficient (R) between the model predictions and 

experimental observations. R
2
=0 indicates a poor model 

while R
2
=1 indicates a very good model. However, a model 

with a high R
2
 may not necessarily be a very good model 

[27], most especially where the fitted model involves 

transformation/scaling of the response variable(s). There is 

no guarantee that when the model predictions are translated 

to the actual scale that the level of accuracy attained in the 

transformed state will also be attained in the untransformed 

state. Therefore, MARE (%)), as given in (3), was used in 

addition to R
2
 to evaluate the goodness of the ANN-based 

models described in this paper:  

 MARE(%) 100maximum
p a

a

 



 
   

 

           (3) 

where p =predicted viscosity (mPa.s) in an untransformed 

state, a = actual viscosity (mPa.s) in an untransformed 

state,  =modulus (absolute value) of the terms in the 

bracket. Once a network which satisfies all these conditions 

is found, the training can be terminated. A model with a 

very low MARE, if possible, 0% is desirable. 

 

III.   RESULTS AND DISCUSSION 

Following the ANN training procedures described in 

section 2.3, different ANN structures and sizes were 

searched. Although in all cases, maximum MU was attained, 

true convergence in terms of #, SSW and SSE was not 

attained.  For example, for 1-hidden layer network, 

increasing the number of hidden neurons from 7 to10 did 

not bring any appreciable difference in the R
2
s (all =~1) and 

MAREs (decrease from 8.1 to 6.3%) of the networks. 

However, # increases substantially from 33 to 45 and SSW 

decreases noticeably from 265.13 to 173. Therefore, a [7, 1] 

network was selected pending further performance 

evaluation tests. Although other networks having hidden 

neurons, #s and SSWs (except the network with 1 hidden 

neuron) less than that of [7, 1] network were obtained, but 

they were less accurate in terms of MAREs (15% -105% 

compared to 8.1%)) despite having R
2
s>0.98. Since the 

overall target was to have a network with R
2
=~1 and MARE 

as low as possible, the search was terminated when a 

network having 11 hidden neurons with #=52; SSW=481.4; 

R
2
=1.0 and MARE=3.38% was obtained. Attempt was also 

made to search for a 2-hidden layer network to model the 

entire data. The nonconvergence trend similar to the one 

observed while training the 1-hidden layer network was also 

observed. Therefore, the training was terminated when a [4, 

4, 1] network having #=38, SSW=183, MARE=4.7% and 

R
2
=1.0 was obtained. 

A possible factor responsible for the lack of true 

convergence to a unique solution is that the ANN may be 

having difficulty learning the relationship between black 

liquor viscosity and the three input variables, solids 

concentration, temperature and shear rate, under the 

conditions where shear rate does not affect the liquor 

viscosity. At solids concentrations <=50.98%, the viscosity 

of the literature liquor is independent of shear rate. At 

higher solids concentrations (>50.98%), the liquor viscosity 

is independent of shear rate at high temperatures; however, 

at lower temperatures and/or high shear rates, the liquor 

shows shear-dependence behaviour [4]. It is very likely that 

the ANNs see shear rate as a redundant variable under the 

Newtonian conditions and therefore, this made its learning 

difficult. While it is clear that at the Newtonian regions, 

black liquor viscosity is independent of shear rate, this is 

not so at the nonNewtonian regions. Despite suffering 

redundancy problem, it is clear that ANN is potentially able 

International Journal of Chemical Engineering and Applications, Vol. 6, No. 3, June 2015

197



to accurately model the joint Newtonian and nonNewtonian 

behaviours of black liquor over a wide range of process 

conditions. A network with internal classification ability 

(beyond the scope of this current study), trained using other 

algorithms, may be more effective than multilayer 

feedforward ANN. 

 
TABLE I: PRELIMINARY VALIDATION DATA FOR THE LITERATURE LIQUOR 

 
SC=solids concentration. 
 

TABLE II: PERFORMANCES OF THE ANN-BASED VISCOSITY MODELS FOR 

THE LITERATURE LIQUOR OVER A WIDE RANGES OF PROCESS CONDITIONS 

(SR=shear rate and T=temperature) 

 

TABLE III: INTERMEDIATE NON-NEWTONIAN VISCOSITY DATA FOR THE 

LITERATURE LIQUOR 

 
 

A. Preliminary Validation Test 

In order to ascertain the generalization ability of the three 

shear-dependent ANNs obtained above, they were exposed 

to the independent data in Table I. The performances of the 

networks are as shown in Table II. It is observed that [7, 1] 

network, the least accurate among the three networks, has a 

generalization error smaller than, but comparable 

(difference<2%) with its modelling error. This indicates 

good generalization ability. Conversely, the two larger and 

more accurate networks have generalization errors that are 

roughly 3 times larger than their corresponding modelling 

errors, indicating that they have poor generalization abilities. 

On comparing the [11,1] and [4,4,1] networks, the more 

accurate [11,1] network, having larger SSW and # than 

those of [4,4,1] network would have been expected to 

generalize less than the [4, 4, 1] network; but the 

generalization results proved otherwise. It seems logical to 

say that the better performance of the [11, 1] network over 

the [4, 4, 1] network depends on its simpler (1-hidden layer) 

structure/configuration rather than the number of its 

parameters or the size of its SSW. Conversely, for the 

networks of the same configuration (1-hidden layer), the 

more accurate [11, 1] network with the larger SSW and 

more #, is less generalized than the [7, 1] network, as 

expected. It seems logical to conclude that, the [7, 1] 

network’s generalization ability is a function of its SSW. 

Although it was difficult to obtain a unique Bayesian-

trained multi-layer feed-forward ANN-based model for 

predicting black liquor viscosity over a wide range of 

process conditions, it is evident that, for practical 

applications, the least accurate (with MARE=8.1%), but 

most generalized (with MARE=6.45%)  [7, 1] network 

obtained in this study, may be suitable. 

B. Generalization Performances of the Joint Newtonian 

and non-Newtonian Black Liquor Viscosity Models          

The generalization capabilities of the three ANN-based 

models which were developed for jointly predicting 

Newtonian and nonNewtonian viscosity of black liquor as a 

function of solids concentration, temperature and shear rate, 

over a wide range of process conditions, were evaluated 

using independent data points which were limited to low 

solids concentrations and viscosities where the liquor 

behaves typically as Newtonian fluid. The results showed 

that only [7, 1] network has good generalization capability 

under these conditions. Unfortunately, it is not clear 

whether the models will generalize well to new inputs at 

high solids concentrations and high viscosities where black 

liquor is known to typically exhibit nonNewtonian 

behaviour. To be able to investigate the models’ predictive 

and generalization capabilities in the absence of 

experimental data under these conditions, response surface 

methodology (RSM) which was recently suggested in [10] 

was adopted. Following the procedures outlined in [10], 

these networks were therefore exposed to new input data 

sets-solids concentrations and temperatures at carefully 

selected intermediate values of the known modelling input 

data points for shear rates spanning more than three decades 

(Table III). The prediction surfaces,   multiple three 

dimensional (3D) scatter plots of the modelling and 

intermediate outputs were obtained at each shear rate for the 

three networks . At 10 s
-1

, as observed from Fig. 3, the 

modelling outputs from all the three networks fall smoothly 

on their prediction surfaces, indicating that the models are 

able to reasonably predict their outputs from the known 

inputs. However, only the [7, 1] and [11, 1] networks are 

able to predict the intermediate outputs, which all fall on 

their respective surfaces at reasonable intermediate 

positions between the modelling outputs. The [4, 4, 1] 

network with the most complex architecture among the 

three networks predicts very low viscosity of 281 mPa.s at 

solids concentration=61% and temperature=40 
o
C, as 

opposed to viscosity > 2000 mPa.s predicted by [7, 1] and 

[11, 1] networks at the same conditions. Consequently, as 

shown in Fig. 3, only the predictions from [7, 1] and [11, 1] 

networks are large enough to be noticed on their respective 

 SC (%)        Temperature (
o
C)   Shear rate (s

-1
)  Viscosity (mPa.s) 

11.95                        16                      1000                     2.138 

11.95                        16                      1500                     2.138 

11.95                        16                      2000                     2.138 

11.95                        25                      1000                     1.773 

11.95                        25                      1500                     1.773 

11.95                        25                      2000                     1.773 

31.85                        10                       200                     10.755 

31.85                        10                       400                     10.755 

31.85                        30                       500                       5.615 

31.85                        30                      1000                      5.615 

31.85                        30                      1500                      5.615 

31.85                        30                      2000                      5.615 

 

Model/Applicable                    R2                                        MARE (%)               SSW         #           

process conditions   Modelling  Generalization  Modelling Generalization      

ANN [7,1]                1.0             0.9943               8.08            6.45             265.13  33/36 

@ all SR, all T 

 

ANN [11,1]               1.0             0.9952              3.38           9.56              481.43  52/56 

@ all SR, all T  

 

ANN [4,4,1]              1.0              0.9997              4.70          13.73            183.10  38/41 

@ all SR, all T  
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surfaces. This result shows that [4, 4, 1] network might have 

over-fitted its training data, and hence failed to generalize to 

new inputs at 10 s
-1

 and high viscosity. Following the 

procedures utilized at 10 s
-
1 the networks performances 

were also evaluated at 100 s
-1

, 1000 s
-1

, 1500 s
-1

 and 2000 s
-

1
 using the data in Table III. Fig. 4 shows the models 

generalization performances at 1000 s
-1

. At all process 

conditions, modelling and the intermediate outputs from all 

the three networks fall smoothly on their respective 

prediction surfaces while the intermediate outputs fall at 

reasonable intermediate positions between the modelling 

outputs. This finding demonstrates that all the networks 

give reasonable predictions and have strong generalization 

capabilities at 1000 s
-1

. The models’ performance results at 

100, 1500 and 2000 s
-1 

are found to be similar to their 

performances at 1000 s
-1

.  It is concluded that over wide 

ranges of solids concentrations, temperatures, shear rates, 

and viscosities, [7, 1] and [11, 1] ANNs would give 

reasonable black liquor viscosity estimates when used with 

known and new input data. Since a model with a low 

complexity is usually desirable, a [7, 1] network is 

suggested for the prediction of the joint Newtonian and 

nonNewtonian viscosities of the literature liquor over a 

wide range of process conditions. 

 
Fig. 3. Generalization performances of three ANN-based models for the 

literature liquor at 10 s-1; (SC= solids concentration). 

 

 
Fig. 4. Generalization performances of three ANN-based models for the 

literature liquor at 1000 s-1; (SC= solids concentration). 

 

IV.   CONCLUSIONS 

Hitherto, the available models describing black liquor 

viscosity behaviour were applicable over limited ranges of 

process conditions. This would require the use of multiple 

models for the analysis of its behaviour over wide ranges of 

conditions. This study developed artificial neural network 

(ANN)-based models for joint prediction of the Newtonian 

and nonNewtonian viscosities of black liquor over wide 

ranges of solids concentration, temperature and shear rate. 

Performance evaluation and consideration for network’s 

complexity show that a simple multi-layer feed-forward [7, 

1] network with strong generalization capability and having 

R
2
=1.0 and maximum absolute relative error (MARE~=8%) 

between actual and predicted data, can successfully be used 

in place of multiple functional models for the analysis of 

black liquor viscosity behaviour over a wide range of 

conditions. During training, the network experienced 

learning difficulties; this was possibly due to redundancy of 

shear rate factor when the liquor exhibits pure Newtonian 

behaviour. A network with internal classification may be 

able to eliminate this difficulty.   
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