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Abstract—We attempted to reduce and reform tar-derived 

pyrolysis during coal gasification. Volatile–char contact can be 

used to reduce tar emissions. We developed a novel circulating 

fluidized bed consisting of a bubbling bed pyrolyzer and 

combustor made of quartz for direct observation of the solids’ 

behavior. Raw coal was fed to the pyrolyzer (700–900°C) and 

gases, tar, and char were formed. The resultant char was 

circulated with bed material to the combustor, and combusted 

completely or partially. During partial combustion, some chars 

were combusted, and the uncombusted chars were circulated 

back to the pyrolyzer (termed char recycling). During char 

recycling, the recycled char could contact tar derived from 

pyrolysis, and the volatile–char interaction was enhanced with 

char recycling time. The product gas yield, mainly H2 and CO, 

increased, whereas the heavy and light tar yields decreased with 

char recycling. 

 
Index Terms— Circulating fluidized bed, coal pyrolysis, tar 

reduction, tar reforming, volatile–char interaction. 

 

I. INTRODUCTION 

Gasification is an important clean coal technology, 

because the product gas, i.e., syngas, can be used for various 

purposes such as power generation, and as a raw material for 

liquid fuel and chemical synthesis. The efficiency of an 

integrated coal-gasification combined cycle (IGCC) is higher 

than that of conventional coal-fired power generation. In 

Japan, an IGCC has been operated by JOBAN Joint Power 

Co., Ltd. on a commercial scale, and the power generation 

efficiency (lower heating value basis) with a 1200°C class 

gas turbine (GT) reached 42% [1]. 

More recently, an advanced IGCC (A-IGCC) has been 

proposed [2]. The A-IGCC exhibits a higher power 

generation efficiency compared with conventional IGCC. 

The A-IGCC system is based on an exergy recuperation 

concept that involves the recycling of exhaust heat of the GT 

via an endothermic reaction during steam gasification. The 

A-IGCC system can improve the thermal efficiency. Its 

overall efficiency is theoretically higher than that of a 

conventional IGCC system, which uses an 
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entrained-bed-type gasifier. In the A-IGCC system, coal is 

gasified at a relatively low temperature (< 1173 K) using only 

steam generated by the exhaust heat of the GT. Reactor 

design for low-temperature steam gasification of coal is 

essential for development of the A-IGCC system. A fluidized 

bed-type gasification reactor could be suitable because the 

residence time (i.e., reaction time) of the coal in the fluidized 

bed gasifier can be adjusted. However, in the 

low-temperature gasification process, a decrease in char 

gasification rate and the evolution of a large amount of tar are 

important issues for chemical reaction control. We have 

proposed isolation of the pyrolysis from the gasification zone 

in a circulating fluidized bed reactor to promote char 

gasification [3]. The char gasification rate increased as a 

result of the isolation. However, tar emission still remained  

an issue for attainment of low-temperature gasification. 

Many researchers have reported on methods to reduce tar, 

such as partial oxidation [4], [5], catalytic decomposition 

[6]-[10], and char utilization [11]-[22]. Char utilization has 

advantages such as the avoidance of catalyst deactivation by 

impurities in the coal, such as sulfur and chlorine, and low 

cost. Zhang et al. [17] examined tar reduction during rapid 

pyrolysis in the presence of steam in a drop tube furnace 

(DTF) reactor. They fed raw coal with char in different 

mixing ratios into the DTF reactor. Tar formed from the 

pyrolysis of raw coal can be cracked or reformed by the char 

that is co-fed in the DTF. Matsuoka et al. [19] suggested the 

possibility of tar reduction in a circulating fluidized bed 

reactor (CFB) for high-char concentrations. However, some 

ambiguity exists regarding tar reduction by the interaction of 

tar with char. In this study, we developed a CFB reactor and 

examined the effect of operating conditions on tar reduction 

by char. 

 

II. EXPERIMENTAL 

A. Coal Sample 

Indonesian sub-bituminous coal (Adaro coal, AD) of 0.5 to 

1.0 mm was used. The coal properties are shown in Table I. 

These samples were dried under vacuum for 8 h prior to use. 

 
TABLE I: ULTIMATE ANALYSIS OF ADARO COAL  

 C H N S O (diff) Ash 

 (wt%, dry ash free) (wt%, dry) 

AD 70.4 4.8 0.9 0.1 24.0 0.6 

B. Experimental Procedure 

We developed a novel type of circulating fluidized bed 

reactor consisting of a bubbling bed pyrolyzer and combustor. 

All reactors were made of quartz. A schematic diagram of the 

experimental apparatus is shown in Fig. 1. Silica sand (JIS 
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#8) that is inert for tar reforming was used as a bed material. 

Gold image electric furnaces were used for heating the 

reactors and we could therefore observe the fluidizing state of 

solids and the reaction behavior of samples at high 

temperature. 

 

 
Fig. 1. Schematic diagram of CFB. 

 

The pyrolyzer and combustor were heated to 700–900°C 

and 850°C, respectively, while maintaining bed material 

circulation. The circulating rate (Gs) was maintained at ~1.2 

kg m
-2

 s
-1

. After stabilization of the solids circulation, we 

started feeding raw coal to the pyrolyzer using a screw feeder 

at 0.4 g/min. The coal was pyrolyzed rapidly, and the 

volatiles (gases and tar) and char were formed. The resultant 

char was circulated to the combustor with the bed material to 

be combusted. Under complete combustion of the char, all 

chars were converted to CO2, and then, only the bed material 

was circulated back to the pyrolyzer. Under partial 

combustion conditions, a portion of the char was combusted 

and some of the char remained and was recycled to the 

pyrolyzer with the bed material (this condition is defined as 

the char recycling mode). The concentration of recycled char 

in the pyrolyzer increased as a result of the continuous char 

recycling. The char recycling was continued for 4 h. During 

char recycling, the recycled char can be contacted with 

volatiles produced from the pyrolysis of raw coal from the 

feeder, thereby enhancing the volatile–char interaction 

(VCI). 

Gas chromatography (GC) was used to analyze the gases 

derived from each reactor. Heavy and light tar (smaller 

molecular weight such as benzene, toluene, and naphthalene) 

was sampled from two different ports as shown in Fig. 1. 

Heavy tar was collected using a glass wool thimble filter. The 

filter was washed with tetrahydrofuran and the solution was 

then allowed to evaporate. The residue was subjected to an 

ultimate analysis. Light tar was extracted using a syringe and 

was washed with methanol. The methanol solution was 

analyzed by GC-mass spectrometry. 

 

III. RESULTS AND DISCUSSION 

A. Product Distribution 

Fig. 2 shows the product distribution (carbon yield) of AD 

at each pyrolyzer temperature. The total product yield at each 

pyrolyzer temperature is approximately 100 mol/100 mol 

carbon (C), which indicates that a good mass balance was 

achieved. 

 
Fig. 2. Product distribution of AD at each pyrolyzer temperature. 

 

B. Increasing Gas Yield with Char Recycling 

Fig. 3 shows that the product gas yield increased with char 

recycling over 4 h during pyrolysis. H2 and CO yields are 

plotted in Fig. 3 (a) and (b), respectively. These yields 

increased with increasing pyrolyzer temperature without char 

recycling. The H2 and CO yields were also enhanced by char 

recycling, which suggests that the tar was deposited on the 

recycled char as a coke and was reformed by steam derived 

from pyrolysis. Though not shown here, the yields of other 

gases such as CO2, CH4, and C2 were independent of char 

recycling.  

 
Fig. 3. Product gas yield during pyrolysis at each pyrolyzer temperature with 

or without char recycling for 4 h. (a) H2 yield, (b) CO yield. 
 

C. Reduction of Light Tar with Char Recycling 

The variation in light tar abundance (benzene, toluene, 

xylene, phenol, naphthalene, and phenanthrene) during 

pyrolysis with char recycling time is shown in Fig. 4. The 

yield of each material formed without char recycling is 

shown for zero char recycling time. Fig. 4 (a) to (b) show the 

yield at pyrolyzer temperatures of 700°C, 900°C, 

respectively. 

The results for each pyrolyzer temperature indicate a 
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decrease in light tar yield with char recycling. The VCI was 

therefore enhanced during char recycling, and some of the 

light tars were deposited on the char and then reformed. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Variation of light tar yield for AD with char recycling time at 

pyrolyzer temperatures of (a) 700°C, (b) 900°C. 

 

D. Decrease of Heavy tar Yield with Char Recycling 

Fig. 5 shows the variation of heavy tar yield for the AD 

with char recycling during pyrolysis at each pyrolyzer 

temperature. The yield at 0 h equates to that without char 

recycling. The heavy tar yield was lower with increasing 

pyrolyzer temperature. Secondary gas phase decomposition 

of tar derived from pyrolysis therefore occurred [23]. The 

heavy tar yield at each pyrolyzer temperature decreased with 

char recycling time. At 700°C and 800°C, the heavy tar yield 

decreased significantly. At 900°C, the decrease of tar yield 

leveled off at a char recycling time of 1.2 h. Li-xin et al. [18] 

examined the cracking/reforming of tar in a DTF reactor and 

found that more than 70% of the tar could be reduced by 

co-feeding the char with raw Australian Loy Yang lignite at a 

mixing ratio of 5.7 (char/coal) and 900°C. Although the 

mixing ratio of AD char with raw coal was approximately 20 

after 4 h char recycling under our experimental conditions, 

the tar reduction was much lower than that reported by Li-xin 

et al. We confirm that the raw coal was pyrolyzed to evacuate 

volatile matter after fluidization in the dense bed from direct 

observation. This indicates that char can be contacted with 

pyrolysis-driven volatiles, but the contact was insufficient to 

reduce the tar. The effect of char contact with volatiles on tar 

reduction will be examined in future. 

 
 

Fig. 5. Variation of heavy tar yield of AD with char recycling at each 
pyrolyzer temperature. 

E. Pore Structure of Recycled Chars 

The above results suggest that light and heavy tar was 

deposited on the char and that the char structure changed. Fig. 

6 shows the Brunauer–Emmett–Teller (BET) specific surface 

area (as) of recycled chars at different pyrolyzer 

temperatures. 
 

 
 

 

 

 

 

 

 
 

Fig. 6. Variation of BET specific surface area of AD chars discharged from 
CFB before and after char recycling. (a): 500–1000 μm and (b): 250–500 μm 

in diameter. 

 

In Fig. 6, “without char recycling” refers to the specific 

surface area of the chars sampled at the bottom of the downer 

(cf. Fig. 1). The terms “with char recycling before 

combustion” and “with char recycling after combustion” 

refer to the specific surface area of the chars sampled at the 

bottom of the downer after char recycling for 4 h and that 

after partial combustion, respectively. These results indicate 

that tar was deposited in the pores of the char and that some 

of the coke was combusted to regenerate the coke deposited 

in the pores. 
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IV. CONCLUSION 

We examined the possibility of the reduction or reforming 

of tar with enhancing VCI (by char recycling) in a circulating 

fluidized bed reactor. The light and heavy tar content could 

be decreased without using a catalyst, and the product gas 

could be increased. The light and heavy tar deposited on the 

char surface and the deposited tar would be reformed by the 

steam derived from pyrolysis. 
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