
  

 

Abstract—In this study, a method is presented to reduce the 

halogen concentration in the oil produced upon pyrolysis of 

acrylonitrile–butadiene–styrene (ABS) resins containing 

brominated flame retardants. More specifically, hydrotalcite 

was added to a predetermined amount of ABS in a glass reactor, 

and subjected to pyrolysis at 400 °C in nitrogen atmosphere. 

The bromine content in the product oil, residue, and gas released 

upon pyrolysis was analyzed. The main components of the 

product oil following pyrolysis of ABS in the absence of 

hydrotalcite additive were toluene, ethylbenzene, styrene, 

1-bromomethyl-4-methylbenzene, phenol, n-butyl benzene, 

1-methoxy-1-methylethyl benzene, and bromine compounds 

2-bromophenol, 4-benzyloxy bromobenzene, 2,6 dibromophenol, 

and 2-bromotoluene. In contrast, the content of bromine in the 

product oil decreased when hydrotalcite was added to ABS. 

Moreover, negligible amounts of bromine were detected when 

the amount of added hydrotalcite was greater than 8 g. The 

reduced content of bromine in the product oil was attributed to 

the efficient trapping of bromine in the hydrotalcite matrix (as 

determined by the content of bromine in the residue). 

 
Index Terms—Acrylonitrile-Butadiene-Styrene (ABS), 

halogen, hydrotalcite, pyrolysis. 

 

I. INTRODUCTION 

Electrical and electronic equipments (EEEs) are ubiquitous 

in our society, and have increasingly shorter lifespans as they 

become outdated and are replaced by newer models. EEEs 

constitute not only of computers, mobile phones, hair dryers, 

or refrigerators, but also cathode ray tubes [1]. These EEEs 

are subsequently considered as waste electrical and electronic 

equipments (WEEEs) at the end of their lifespan. Hence, the 

treatment of WEEEs has gained considerable importance [2]. 

In the European Union, the amount of WEEE generated per 

capita in 2005 was 17 kg that corresponds to an estimated 

8.3–9.1 million tons of waste [3]. The EU has recently 

introduced legislation aimed to encourage reuse of WEEE 

and recycling to reduce the amount of WEEE sent to landfills 

and incineration [4]. These products contain many materials 

that can be recycled, such as glass or metal. However, the 

 
 

Manuscript received June 15, 2015; revised October 17, 2015.  

N. Morita is with the Department of Urban Environment Systems, 

Graduate School of Engineering, Chiba University, Japan (e-mail: 

Naoyuki_Morita@chiba-u.ne.jp). 

M. Nakayasu is with the Tokyo Metropolitan Tama High School of 

Science and Technology, Japan (e-mail: 

Masami_1_Nakayasu@education.metro.tokyo.jp). 

A. T. Saito, T. Wajima, and H. Nakagome are with Chiba University, 

Japan (e-mail: atsaito@r07.itscom.net, wajima@tu.chiba-u.ne.jp, 

nakagome@tu.chiba-u.ne.jp). 

remaining components that can constitute 15 types of plastics 

currently make the recycling process difficult [5]. Chemical 

recycling of plastics by thermal decomposition of WEEE has 

attracted interest as a promising technology. Upon thermal 

decomposition, the plastic polymer is converted into oil, 

residual carbon, and gases, which can be used as a chemical 

raw material and fuel [6]. Furthermore, there is a rich 

literature on basic research and chemical recycling of waste 

plastic based on thermal decomposition in the presence of a 

catalyst [7]–[18]. WEEE plastics typically consist of a flame 

retardant containing halogen compounds, and thus require 

special handling. Flame retardants can reduce the 

flammability of plastics, however, they represent a health 

hazard to humans owing to their toxic polybrominated 

compound components. Examples of such toxic components 

include polybrominated dibenzo-p-dioxins and 

polybrominated dibenzofurans [19]. The main plastic 

components in WEEE are acrylonitrile–butadiene–styrene 

(ABS) and high impact polystyrene (HIPS). Additionally, 

antimony trioxide is typically present as a synergist for the 

bromine-based flame retardant compounds. Is a technology 

for recycling the plastic of WEEE from hazards to health of 

these compounds research. In particular, extensive studies on 

the thermal decomposition of ABS [20]–[24], the use of 

catalyst [25]–[30], and the use of ammonia as a reducing 

agent [31], [32] have been carried out. As reported in the 

literature, the pyrolysis of brominated flame 

retardants-containing ABS in tubular reactors affords the 

release of bromine from the middle distillate and heavy oil 

component [23]. Moreover, studies on the thermal 

degradation of ABS using semi-batch reactors showed that 

the brominated flame retardant components could be 

converted into residual carbon [21]. Another study examined 

the thermal decomposition of tetrabromobisphenol A, a 

brominated flame retardant, in the presence of a zeolite 

catalyst (ZSM-5 or Y-type zeolite), whereby the latter catalyst 

was more effective in removing the bromine compound [27]. 

We previously reported that it was possible to reduce the 

content of bromine in the oil produced upon thermal 

decomposition of brominated polystyrene by using 

hydrotalcite (HT) additive [33]. HT is a layered double 

hydroxide consisting of a metal complex hydroxide 

comprising anionic species in the divalent Mg
2+

 and trivalent 

Al
3+

 host layers and interlayer of the guest layer [34], [35]. HT 

is the catalyst [36], [37] and gas removal [38] material for the 

[39], as ion exchanger [34], [35], [40], [41] has received 

increasing attention in recent years. High anion exchange 

capacity comparable to HT organic ion-exchange resins has 
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received much attention and has been used as an adsorbent for 

the removal of various contaminants in aqueous solutions. 

The adsorption properties of inorganic anions such as sulfates, 

chromates, arsenates, selenate, borates, nitrates, fluorides, 

and phosphates have been studied [42]. The adsorption of 

anions onto HT is known to proceed via the formation of 

inter-layer outer sphere complexes upon an anion exchange 

reaction [43]. Additionally, HT has been generating interest 

as a catalyst in bio-diesel fuel production, whereby a noted 

increased yield from 62% to 77% has been observed in the 

presence of HT catalyst [44], [45]. The catalytic activity of 

HT has been further demonstrated in the aerobic oxidation of 

benzyl alcohol [46]. 

In this study, a method is presented to reduce the content of 

bromide in oil generated upon thermal decomposition of ABS 

at 400 °C, whereby HT was employed as an additive during 

the pyrolysis process.  

 

II. EXPERIMENTAL 

A. Materials 

ABS was obtained from Asahi Kasei Chemicals 

Corporation. A synthetic HT was used as an additive 

(DHT-4A; Kyowa Chemical Industry Co., Ltd.,). 

B. Experimental Apparatus and Procedures 

The experimental apparatus used in this study is shown in 

Fig. 1. A mixture of HT and ABS (20 g) were introduced into 

a glass reactor. To remove oxygen from the reactor, the latter 

was flushed with nitrogen gas at 50 mL/min for 1 h. Pyrolysis 

was then initiated. The temperature of the glass reactor where 

the sample resided was monitored using a thermocouple. The 

temperature of the reactor was increased to 400 °C at a 

heating rate of 5 °C/min, after which it was allowed to cool 

naturally. The gases generated during pyrolysis were 

recovered in a recovery container as the product oil passed 

through the cooling condensation pipe. Non-condensable 

gases were collected in a gas pack via bubbling of an alkaline 

aqueous solution, a bromine alkaline generated gas bromide 

ions in the solution. 

 
Fig. 1. Experimental apparatus. 

C. Analysis 

The product oil was diluted 100 times with hexane 

(Guaranteed Reagent grade, Wako Pure Chemical Industries), 

and analyzed by comparing the peaks obtained by gas 

chromatography–mass spectrometry (GC–MS) on a 

Shimadzu GCMS-QP2010 Ultra. The compounds were 

identified using a GC–MS spectral library. Pure helium was 

used as a carrier gas and a Rtx-1 column (inner diameter of 

0.25 mm and film thickness of 0.25 μm) was used. For 

analysis, the temperature was maintained at 40°C for 30 min, 

and then increased to 230 °C at a heating rate of 5 °C/min. 

The bubbling alkaline aqueous solution was diluted to 

100-fold with ultrapure water and subjected to ion 

chromatography on a Shimadzu ion chromatograph to 

determine the bromine concentration. A Shim-pack column 

(150 L × 4.6) and CDD-10Asp detector were used. 

The structure of the residue (following pyrolysis) was 

examined by X-ray diffraction (XRD; D2 PHASER, Bruker 

xxx). The composition of the residue was examined by 

scanning electron microscopy (TM3030, Hitachi) coupled 

with energy-dispersive X-ray spectroscopy (BURUKER 

QUANTAX). Elemental distribution mapping of the surface 

of the sample residue following thermal decomposition was 

conducted. Energy-dispersive X-ray spectroscopy images 

were collected from five different samples areas, and 

provided quantitative determination of the bromine contents 

in these areas. The obtained values were averaged 

accordingly to determine the representative content of 

bromine. 

Furthermore, assuming that the landfill .The residue 

obtained after pyrolysis was subjected to a bromine 

dissolution test. The residue was mixed with distilled water at 

a ratio of 3: 100 of 200 times / min, and the mixture was 

shaken for 2 h. The supernatant liquid following 

centrifugation was subjected to ion chromatography to 

determine the content of bromine leached from the residue. 

 

III. RESULTS AND DISCUSSION 

A. Product Oil 

The yield of the product oil obtained upon pyrolysis of 

ABS is shown in Fig. 2. As the results show, the yield of the 

product oil varied in the range of 35–45% regardless of the 

amount of added HT (0–20 g). 

 

 
Fig. 2. Yield of product oil following pyrolysis of ABS in the presence of 

varying amounts of HT additive. 

B. Residue 

Table I lists the chemical components in the oil generated 

upon thermal decomposition of ABS in the presence of 

varying amounts of HT. Toluene, ethylbenzene, styrene, 

phenol, n-butyl benzene, and 

1-methoxy-1-methylethylbenzene were detected along with 
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bromine compounds 1-bromomethyl-4-methylbenzene, 

2-bromophenol, 4-benzyloxy bromobenzene, 

2,6-dibromophenol, and 2-bromotoluene upon thermal 

decomposition of ABS in the absence of HT additive. In 

contrast, the bromine compounds were not detected when the 

HT additive amount was greater than 8 g. 

 
TABLE I: COMPONENTS OF PRODUCT OIL OBTAINED USING VARYING AMOUNTS OF HT ADDITIVE 

Compound Formula 
Amount of hydrotalcite additive (g) 

0 2 4 5 8 10 12 15 20 

Toluene C7H8 ○ ○ ○ ○ ○ ○ ○ ○ ○ 

Ethylbenzene C8H10 ○ ○ ○ ○ ○ ○ ○ ○ ○ 

Styrene C8H8 ○ ○ ○ ○ ○ ○ ○ ○ ○ 

1-Bromomethyl-4-methylbenzene C8H9Br ○ ○ ○ ○ nd nd nd nd nd 

Phenol C6H5OH ○ ○ ○ ○ nd nd nd nd nd 

n-Butyl benzene C10H14 ○ ○ ○ ○ nd nd nd nd nd 

1-Methoxy-1-methylethylbenzene C10H14O ○ ○ ○ ○ nd nd nd nd nd 

2-Bromophenol C6H5BrO ○ ○ ○ ○ nd nd nd nd nd 

4-Benzyloxy bromobenzene C13H11BrO ○ ○ ○ ○ nd nd nd nd nd 

2,6-Dibromophenol C6H4Br2O ○ ○ ○ ○ nd nd nd nd nd 

2-Bromotoluene C7H7Br ○ ○ ○ ○ nd nd nd nd nd 

○, detected; nd, not detected 

 

Fig. 3 illustrates the amount of bromine in the product oil 

upon thermal decomposition of ABS in the presence of 

varying amounts of HT additive. As the results show, in the 

absence of HT additive, the amount of bromine determined 

was 100%, which decreased upon addition of HT. Further 

increases to >8 g resulted in negligible detectable amounts of 

bromine. Hence, the results reveal that the amount of bromine 

in the product oil can be considerably reduced to zero upon 

addition of HT (>8 g). 

 

 
Fig. 3. Bromine content in the product oil following pyrolysis of ABS in the 

presence of varying amounts of HT additive. 

 

The observation results of the residue by SEM are shown in 

Fig. 4. When the added amount of HT increased, the large 

particles and the small particles could be observed on the 

surface. The former can be interred to be Mg-Al oxides. And 

bromine can be interred to have been absorbed on the surface 

of the later. 

The amount of bromine in the residue following pyrolysis 

is shown in Fig. 5. As the results show, the amount of bromine 

was 8.9% when HT was not added, and increased to 16% as 

the additive amount of HT increased (2–5 g). The amount of 

bromine was 23% when more than 8 g of HT was used. Thus, 

the results further confirmed that bromine was trapped within 

the residue upon addition of HT. 

 
 

 
Fig. 4. Residue after pyrolysis of ABS (a) without HT and (b) with 10g of 

HT. 

 

The bromine dissolution test did not show leaching of 

bromine from the residue under all conditions examined. 

(b) 

(a) 

International Journal of Chemical Engineering and Applications, Vol. 7, No. 4, August 2016

251



  

Therefore, we can conclude that bromine is strongly 

encapsulated into hydrotalcite. 

 

 
Fig. 5. Variations in the amount of bromine on the residue surface as a 

function of HT additive amount. 

 

C. Content of Bromine in Gas  

The gases generated upon pyrolysis of ABS were analyzed. 

Incidentally, the volume of gas generated by thermal 

decomposition was less than 1 L in all experiments conducted. 

The components of the water-insoluble gas include H2, CH4, 

and CO2. H2 and CH4 were derived from the thermal 

decomposition of the plastic, whereas CO2 was derived from 

the combustion of hydrotalcite. 

The content of bromine in the generated water-soluble gas 

is shown in Fig. 6. In the absence of HT additive, bromine was 

detected in the generated gas. In contrast, bromine was not 

detected when HT additive was used within the HT amounts 

studied. This result further confirmed that bromine was firmly 

trapped within the HT matrix and thus was not released in the 

gases produced during pyrolysis. 

 

 
Fig. 6. Bromine content in the gas generated upon pyrolysis of ABS in the 

presence of HT at varying amounts. 

 

IV. CONCLUSION 

In this study, the reduction of bromine content in the 

product oil obtained upon thermal decomposition of 

bromine-based plastic ABS was examined by introducing 

hydrotalcite additive. The results showed that the addition of 

an appropriate amount of hydrotalcite (>8 g) to ABS sample 

(20 g) resulted in considerable reduction of the content of 

bromine (to zero) detected in the product oil.  

The residue was added hydrotalcite is concentrated 

bromine, it is believed that the reason may be obtained a 

product oil of bromine does not contain. Furthermore, the 

bromine dissolution test confirmed that bromine was 

efficiently encapsulated within the hydrotalcite matrix, and 

thus did not leach in solution.  
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