
 

Abstract—In this study, the TiO2 immobilized on fiberglass 

cloth was prepared to improve the photocatalytic activity of 

TiO2 and overcome the difficulty of reuse through painting 

followed by sol-gel process. The morphology and 

microstructure of TiO2 loaded on FGC were characterized via 

XRD and SEM, respectively. The result revealed that 1) the 

crystalline structure of immobilized TiO2 was nearly 

unchanged compared with pure P25 nanoparticles.  2) The 

TiO2 loaded on FGC had larger specific surface area than that 

of P25. 3) The TiO2/FGC system displayed remarkable 

photocatalytic activity on decomposition of MC-LR. 

 
Index Terms—TiO2, fiberglass cloth, MC-LR, photocatalytic 

performance. 

 

I. INTRODUCTION 

Nano-titanium dioxide (TiO2) is considered as one of the 

most promising  photocatalyst for environmental 

remediation due to its physicochemical properties such as 

thermal and chemical stability, relatively high photocatalytic 

activity, low-toxicity, and low cost [1]-[3]. However, there 

are some obstacles, including the difficulty in seperating the 

suspended TiO2 from the liquid-solid photocatalytic system 

and the low quantum yield of TiO2 under the radiation of 

sunlight, impeding the large-scale application of TiO2 

photocatalysis in water and air remediation [4], [5]. The 

immobilization of TiO2 onto solid materials (glass plates, 

ceramic membranes, etc.) makes it easy to be recycled but 

the consequent problem is the considerable reduction of 

photocatalytic activity than that of suspension system due to 

the decrease of effective surface area of photocatalyst [6]-

[9].  

Human activities such as the agricultural and industrial 

development, which contribute to eutrophication, water 

pollution and climate change, have led to an increasing 

occurrence of prolonged and intense harmful blooms of 

cyanobacteria around the world in recent years [10]. 

Cyanobacteria are a photosynthetic -prokaryotic group that 

is among the most ancient organisms on earth [11]-[13]. 

They can release various metabolites such as taste and odor 

compounds, anti-microbials, and also problematic toxins 

known as cyanobacterial toxins or cyanotoxins [14]-[16]. 

The cyclic hepatotoxic peptides microcystins (MCs) are 

among the most important and by far themost studied 

cyanotoxins. This group of toxins can be produced by by a 

number of cyanobacteria genera such as Microcystis, 

 
Manuscript received March 31, 2015; revised July 21, 2015. 
The authors are with Key Laboratory of Integrated Regulation and 

Resource Development on Shallow Lakes, Ministry of Education, College 

of Environment, Hohai University, Nanjing, 210098, China (e-mail: 
hjycdq@hhu.edu.cn, hjycyq@hhu.edu.cn) 

Anabaena, Plankothrix and Nostoc had been proved to be 

acute hepatotoxicity [17], [18]. Though MCs mainly inhibit 

the serine/threonine phosphatases (PP1 and PP2A), they 

may also promote tumor formation, induce apoptosis, and 

present long-term chronic toxic effects on wildlife, domestic 

animals and humans [19]-[22].  

MCs are extremely stable in natural aquatic environments, 

being resistant to various natural elimination processes 

including chemical oxidation by naturally generated reactive 

oxygen species and biological transformation by other 

microorganisms [23]-[26]. Consequently, the presence of 

MCs in source water presents a significant threat to the 

ecosystemintegrity and human health [10], [27].  

MCs is a group of monocyclic heptapeptides with many 

different isomerides and among which Microcystin-LR(MC-

LR) possesses  the  most  toxic  effect [28], [29]. As a result, 

a guideline value of  1μgL
−1

 for  MC-LR  in  drinking  

water  has  been  issued by the World Health Organization 

[30]. In general, MC-LR exhibits a stable property against 

physicochemical and biological factors such as temperature, 

sunlight and enzymes [31]-[33]. It was been proved difficult 

to remove MC-LR from drinking water by conventional 

water treatment techniques due to their stable physical and 

chemical properties[34]. Advanced oxidation processes 

(AOPs)  including chlorination, ozonation, hydrogen 

peroxide  disinfection and photocatalysis  have been proved  

efficient to  remove  MC-LR [35]-[37], but  the  cost  of  

continuous  input  of expensive chemical reagents is 

prohibitive. On the other hand, the use of chemical methods 

to remove the MC-LR may result the secondary 

contamination of drinking water. As the presence of MCs in 

water environment has a potential hazard to human health, 

it’s urgent to find effective methods to eliminate it and make 

sure the safety of drinking water. 

Fiberglass cloth (FGC) is one kind of performance 

outstanding inorganic nonmetallic material with flexibility, 

corrosion resistance and easy to handle [38]. It was proved 

the photocatalyst of TiO2 immobilized fiberglass cloth 

exhibited photocatalytic activity in photodecomposition of 

organic pollutants [39]-[42]. However, there are fewer 

studies on the photocatalytic degradation of MCs in a liquid 

phase using TiO2 immobilized onto FGC. In this study, the 

TiO2 immobilized FGC was introduced which was expected 

to effectively improve the removal rate of MCs in aqueous 

phase and deal with the problem of recycle. 

 

II. EXPERIMENTAL 

A. Preparation of TiO2 Immobilized On Fiberglass Cloth 

Pristine FGC was heat-treated in an electric furnace at 

500℃  with ramping rate of 5℃ /min for 2 h before 
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immobilization of the catalysts to ensure complete removal 

of any organic residuals and then cut into pieces of equal 

size. 

The TiO2 catalysts loaded on FGC included TiO2 

suspension and TiO2 sol. TiO2 suspension was obtained by 

dispersing TiO2 (P25) nanoparticles (80% anatase + 20% 

rutile, purchased from Degussa) (2g) in deionized water 

(150ml) and agtitating for 10 minutes. TiO2 sol was 

prepared as follows: tetrabutyl orthotitanate (TBOT) (85ml), 

triethanolamine (15ml) and ethanol (400ml) were mixed and 

agitated for 1.5h. A solution included deionized water (9ml) 

and ethanol (50ml) had its pH value adjusted to 3 by nitric 

acid (1M) was subsequently added to the above mixture and 

kept stirring for 1h at ambient temperature. The resultant 

light yellow and transparent sol was obtained and aged for 

24h from light.  

The immobilization was done by two steps: 1) the TiO2 

suspension was painted on FGC pieces uniformly and 

heating at 200℃ with ramping rate of 2℃/min for 2 h. 2) 

the TiO2 coated FGC was sequently submerged into 

prepared TiO2 sol and extracted at a speed of 10 cm/min and 

then calcined at 450℃ for 1 h with the heating rate of 2℃

/min. 

B. Characterization of Catalysts 

XRD patterns of the catalyst-immobilized on FGC 

samples were obtained by the X-ray diffractometer 

(XTRA/3KW, ARL, Switzerland). The crystallite size of 

each phase was determined from line broadening of the 

respective X-ray spectral peaks using the Scherrer’s formula. 

The microstructure of TiO2 immobilized on FGC was 

observed by a scanning electron microscope (SEM, Hitachi-

3400N, Japan). 

C. Photocatalytic Testing 

A 250 W high pressure mercury lamp with dominant 

wavelength of 365 nm were used as the UV light source for 

photocatalytic reaction. The photocatalytic activity of the 

photocatalyst was assessed by decomposition of 

Microcystin-LR (MC-LR). 0.8 g of photocatalysts was 

dispersed into 500 ml water solution containing 50 μg MC-

LR, and then the mixture was stirred constantly under the 

light with a distance of 25 cm. The reaction solution was 

sampled every 30 min. The samples was filtered by acetate 

cellulose films of 0.45μm and enriched by C18 solid phase 

extraction column. The concentration of MC-LR was 

measured by a high performance liquid chromatograph 

(HPLC, Waters). 

 

III. RESULTS AND DISCUSSION 

A. X-ray Diffraction (XRD) 

The XRD patterns of commercial titanium dioxide (P25) 

and TiO2 immobilized  on FGC were presented in Fig. 1. 

Clearly, both materials exhibit the similar XRD patterns. As 

shown in Fig.1, the series of strong peaks at 2θ of 25.2, 37.8 

and 38.5 were respectively corresponding to the (101), (004) 

and (112) crystal planes of anatase phase, and the peak at 2θ 

of 27.4 was corresponding to the (110) crystal plane of rutile 

phase as well. These signals were indicative of the dominant 

anatase phase in both catalysts which was generally 

recognized with higher photocatalytic activity than rutile 

form. 

According to the Scherrer formula [43], the mean 

particles of P25 and TiO2 loaded on FGC were respectively 

calculated to be 21nm and 16nm. The results indicated the 

catalysts immobilized on FGC had larger specific surface 

area than that of P25 which was conducive to photocatalytic 

performance. 
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Fig. 1.  a) XRD patterns of P25 and b) TiO2 immobilized on FGC. 

 

 
(a) 

 
(b) 

Fig. 2. TEM image of TiO2 loading on FGC a) by painting & sol-gel 
method and b) by painting twice. 

 

B. Scanning Electron Microscopy (SEM) 

Fig. 2 was the SEM images of TiO2 loaded on FGC by 

two patterns. As showed in both images, the TiO2 
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nanoparticles distributed evenly on the FGC with regular 

structure. Furthermore, it was apparently the pattern of 

painting twice result in more TiO2 particles loading on FGC 

compared to the pattern of painting followed by sol-gel 

process, which indicated the painting was more effectively 

way to immobilize TiO2 onto FGC than sol-gel method. 

According to the TEM image, the average particle size of 

TiO2 particles was about 15 nm which was in concordance 

with the results calculated from XRD spectra. 

C. Photocatalytic Performance of TiO2 Immobilized FGC 

The decompositions of MC-LR in different reactive 

systems were illustrated in Fig. 3. MC-LR was almost not 

degraded by single TiO2 and UV in 3h, but its removal rate 

was up to 68% by TiO2 immobilized on FGC under UV 

light. Obviously, the immobilization on FGC improved the 

photocatalytic performance of TiO2. According the result 

above mentioned, the loading of TiO2 on FGC could 

increase specific surface area of the composite, thus offering 

more photocatalytic reaction centers and improving the 

photoactivity of catalysts. 
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Fig. 3. Decompositions of MC-LR by TiO2, UV and UV/TiO2/FGC. 
 

IV.

 

CONCLUSIONS 

 

The results showed that the TiO2 immobilized on FGC 

would not alter its crystal phase composition. The TiO2

 

loaded on FGC had larger specific surface area than that of 

P25 which was conducive to photocatalytic performance. 

The TiO2/FGC system can be efficiently used for the 

degradation of MC-LR. 
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