
  

 

Abstract—The spontaneous imbibition has been a subject of 

the scientific interest being a background process for numerous 

industrial technologies and occurring in the natural 

environment. In literature the experimental and theoretical 

results regarding this phenomenon describe the media 

imbibition with single-phase liquids and the relation between 

the process rate and media characteristics. The imbibition of 

oleophilic/hydrophobic porous structures with two-phase 

liquids, only one phase of which was wetting, is an objective of 

the current publication. The main purpose is to estimate the 

influence of both the dispersed phase concentration and 

surfactant fraction on the discussed process. The imbibition rate 

was investigated during model experiments with stabilized 

oil-in-water emulsions, which had dispersed phase 

concentrations of 10 vol%, 30 vol%, and 50.vol%. The prepared 

emulsions differed by the fraction of the added surfactant, i.e. 

1.vol%, 2.vol%, and 5 vol%. The obtained results allowed to 

conclude that at the him≥0.02 m, the dispersed phase 

concentration and viscosity decreased versus the height. 

However, the raise of the surfactant fraction caused the increase 

of mass and height of the imbibed emulsions in porous medium. 

Moreover, it provided the increase of viscosity and the change of 

emulsions behaviour as a liquid. 

 

Index Terms—Emulsion, imbibition, porous medium, 

surfactant.  

 

I. INTRODUCTION 

The spontaneous imbibition is referred as a liquid transport 

in porous structures, which is driven by the capillary 

suction-pressure. It appears on pores walls during their 

wetting by a penetrating liquid, if an adhesion force of liquid 

molecules exceeds the force of their mutual attraction [1]–[4]. 

The imbibition is known as a phenomenon occurring in the 

natural environment, i.e. hydrological regime in a soil matrix, 

migration processes in geology; plants seeds imbibition with 

water, etc. Nowadays, it is applied in numerous industrial 

spheres: in environmental protection (viz. oil and its 

derivatives recovery, absorption technology); in chemical and 

material engineering (viz. percolation of the antifungal 
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emulsions into concrete constructions), as well as in 

pharmacology and medicine. 

The experimental data on the spontaneous imbibition 

presented in literature can be divided into the following 

groups: study of the relation between the process rate (i.e. 

mass/height change) and time [1], [5]–[10]; study of the 

dependence between the characteristics of porous structure 

and the imbibition rate [1], [8]–[10]; and study of the effect of 

penetrating liquid characteristics on this process [5]–[7]. 

Majority of the presented results has been related to the 

imbibition with single-phase liquids [1]–[3], [5]–[11], while 

the issues concerning multiphase liquids, viz. emulsions, still 

have not been fully clarified and described. It connects with 

the complexity of the mentioned process.  

Emulsions as thermodynamically metastable systems, in 

practice can be stabilized by emulsifiers or solid particles 

[12]–[16], or due to reducing of the droplets size of the inner 

phase [17]–[19]. However, the adding of emulsifying agents 

is currently the most common method used for emulsions 

stabilization. This explains a great deal of the results 

regarding the influence of different emulsifiers on emulsions 

stability, and their mechanical and morphological properties, 

e.g. size distribution of droplets, their shape, dispersity, and 

others [12]–[15], [20]–[22]. 

The sphere of our scientific interest is the processes of 

multiphase liquids transport in porous media. Concretely, this 

publication provides a discussion and an analysis of the 

experimental results on the influence of the stabilization agent 

fractions and the dispersed phase concentrations on a process 

of porous structure imbibition. The estimated values were the 

changes of mass and height of the imbibed emulsions over 

time; the rate of the imbibed mass increase with a rise of the 

height of an emulsion penetration as well as the variation of 

the dispersed phase concentration during the imbibition 

process. In addition to the above, the correlation between a 

surfactant fraction and a viscosity of the prepared emulsions 

was investigated. 

 

II. EXPERIMENTAL PART  

A. Materials  

In these experiments, stabilized oil-in-water emulsions 

were used as wicking liquids, which dispersed phase behaved 

as a wetting one, while absolutely non-wetting liquid 

represented its continuous phase. The emulsions were 

obtained by means of mechanical stirring during 600 s at 

23±1°C. They were prepared ranging from 10 to 50 vol% of 
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the dispersed phase concentration. Moreover, the investigated 

emulsions differed by fractions of the added emulsifying 

agent (φs), which were equal to 1 vol%, 2 vol% and 5 vol%.  

The oily component was represented by a refined vegetable 

oil produced by EOL Polska Sp.z.o.o., Poland. The 

commercial surfactant Rokacet O7 was used as a non-ionic 

emulsifier to stabilize the prepared emulsions. Its 

hydrophilic-lipophilic balance value equated 10.6. The 

surfactant was produced and obtained from PCC Exol SA, 

Poland. The physicochemical properties of the emulsions 

components are represented in Table I. 
 

TABLE I: PHYSICOCHEMICAL PROPERTIES OF BASIC COMPONENTS 

Type of 

basic 

component 

        Physicochemical properties 

Component 

composition  

 

Density, 

ρ 

kg/m3 

Viscosity, 
η 

mPa·s 

Surface 

tension, γ 

mN/m 

Dispersed 

phase 

Vegetable 

oil 

954.0 

  ±1.7 
56.3 

  ±0.4 

32.2 

  ±1.3 

Surfactant  

 

Ethoxylated 

oleic acid  

908.0 

  ±2.7 
50.2 

 ±0.6 

       36.0 

        ±1.8 

 

The porous medium was represented in a form of stripes, 

which were cut from a non-woven polypropylene sheet 

obtained from Sintac
©
–Polska Sp.z o.o.j.v., Poland. Each 

sample had the same size as a height h of 0.16 m, a width a of 

0.035 m, and the mean thickness of 1.9×10
-3

 m. 

The used polypropylene sheets belonged to the type of 

oleophilic/hydrophobic sorbents. According to the 

experimental data, the sorption capacity of vegetable oil with 

viscosity of 56.3 mPa·s was 24.3 g/g.  

The average porosity of the investigated medium was equal 

to 0.93.   

B. Procedure of the Experiment  

The dependence between the concentration of the added 

emulsifier and the rate of the imbibition process, the changes 

of the dispersed phase concentration and the viscosity of an 

imbibed emulsion versus the height of its penetration in a 

sorbent were investigated experimentally. The used 

installation is represented schematically in Fig. 1. 

              
Fig. 1. Scheme of the used equipment: 

1 – fixator of a porous material;  2 – stripe of a porous material; 

3 – reservoir with the investigated liquid; 4 – balance. 

Each of the prepared polypropylene stripes (2) was dipped 

into a beaker (3) with 200 ml of an emulsion. The contact 

square of material surface was ~1.3×10
-4

 m
2
. This method has 

been described in detail elsewhere [23]. 

The changes of the height of an imbibed liquid front, i.e. him, 

and mass mim versus time tim were followed till the time when 

the process achieved a state of equilibrium. The moment 

when the investigated parameters became unalterable, was 

denoted as maximal time of the imbibition, tmax. After that, a 

sorbent stripe was removed from the beaker and its soaked 

part was cut into fragments fn, as shown in Fig..1. The size of 

fragments was of a height of 0.02 m and a width of 0.035 m. 

Each sample was put into a ceramic dish and the imbibed 

emulsion was washed out with 10.ml of distilled water.  

In the obtained mixture, the dispersed phase concentration 

was measured by means of the nephelometrical method using 

the optical analyzer TurbiscanTM LAB (Formulaction, 

France). The application of this method has been reported 

precisely elsewhere [24]. 

C. Analytical Methods  

The density of the investigated liquids was measured using 

the picnometric method. The viscosity changes related to 

increasing of the surfactant and inner phase concentrations 

were determined by means of a rotational viscometer 

Rheometer RC 20 (Rheotec, Germany). The shear rate values 

varied and were in a range of 80–140 1/s. The surface tension 

was measured with a tensiometer KRÜSS K100 

(Krüss GmbH, Germany). All experiments were conducted at 

a temperature of 23±1°C and atmospheric pressure. 

 

III. RESULTS AND DISCUSSION  

A. Viscosity Changes with Increase of Surfactant 

Concentration  

According to the obtained data, the increase of a surfactant 

concentration influenced on viscosity of the investigated 

emulsions and their behavior as a liquid. The results of the 

viscosity tests are represented in Fig. 2.  
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Fig. 2. Changes of viscosity versus increasing of the surfactant concentration 

at different shear rates. 
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The viscosity values were constant at different shear rates 

for all 10% emulsions, and 30% emulsions, but only with φs of 

1 vol% and 2.vol%. As illustrated in Fig. 2, the obtained data 

were approximated by straight lines in this case and it means 

that the investigated dispersions represented Newtonian 

liquids. However, others behaved as non-Newtonian shear 

thinning liquids, and consequently, the increase of the shear 

rate caused the decreasing of viscosity value. For example, in 

case of 30% emulsion with φs=5 vol%, it reduced from 

38.9.mPa·s for γ=80 1/s till 31.2 mPa·s for γ=130 1/s. 

The phenomenon of viscosity change as a result of the shear 

rate increase was observed for all 50% emulsions. The higher 

was a surfactant concentration in an emulsion, the more 

indicative was the observed decrease (Fig. 2).  

To conclude, an emulsifier concentration influenced 

significantly on viscosity of the investigated two-phase 

liquids. Moreover, the emulsions with higher concentrations 

of the inner phase and stabilization agent, exhibited properties 

of non-Newtonian liquids. 

B. Changes of Imbibition Rate with Increase of Surfactant 

Concentration  

The experimental results showed that the process of porous 

media imbibition with emulsions depended on a fraction of 

the added surfactant and this revealed to be a variation of the 

height and mass of imbibed liquids.  

The data concerning the maximal height of dispersions 

penetration in sorbent samples are shown in Table II.  

 
TABLE II: VALUES OF MAXIMAL HEIGHT OF EMULSIONS PENETRATION  

Dispersed phase 

fraction, φd 

The value of height hmax, m 

φs =1 vol% φs =2 vol% φs =5 vol% 

10 vol% 0.081 0.091 0.101 

30 vol% 0.065 0.080 0.083 

50 vol% 0.040 0.063 0.070 

 

The maximal obtained mass of the emulsions imbibed in 

the non-submerged part of sorptive material, are presented in 

Table III. 

 
TABLE III: VALUES OF MAXIMAL IMBIBED MASS OF EMULSIONS 

Dispersed phase 

fraction, φd 

The value of mass mmax, kg 

φs =1 vol% φs =2 vol% φs =5 vol% 

10 vol% 0.0015 0.0016 0.0024 

30 vol% 0.0009 0.0012 0.0022 

50 vol% 0.0004 0.0011 0.0012 

 

The increase of an emulsifier fraction caused a raise of the 

imbibed emulsion mass in all investigated cases. For 50% 

emulsions, the value of imbibed mass was 3 times higher at 

φs=5 vol% comparing to the emulsions with the lowest 

surfactant fraction, i.e. 1 vol%. Such ratio was equaled to 2.5 

for 30% emulsions and 1.6 for 10%, respectively (Table III). 

The same tendency was observed for the height of emulsions 

fronts (Table II). As an example, the results concerning the 

height variation versus time for 10% and 50% emulsions are 

plotted in Fig. 3–Fig. 4. 

In case of 10% emulsions, it increased from 0.081 m 

(φs=1.vol%) to 0.101 m (φs=5 vol%), i.e. by 25%. For 30% 

emulsions, the difference of the fronts height was equal to 

~0.02 m (i.e. ~30%). Whereas, in case of 50% emulsions, the 

increase of a surfactant fraction till 5 vol% caused rising of 

the height him by 75%, viz. from 0.04 to 0.07 m (Table II, 

Fig..3–Fig. 4). 

 

Fig. 3. Changes of an imbibed liquid height vs time for emulsions with 

different fractions of a surfactant (φd=10 vol%). 
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Fig. 4. Changes of an imbibed liquid height vs time for emulsions with 

different fractions of a surfactant (φd=50 vol%). 

 

To sum up, the concentration of the added emulsifier 

influenced on the kinetics of the imbibition process, 

especially in case of emulsions with φd≥30.vol%.  

Additionally, the increase of an imbibed emulsion mass 

with the rising of height of its penetration was defined. The 

data obtained for emulsions with the emulsifier 

concentrations of 1 vol% and 5 vol% were shown in Fig. 

5–Fig. 6. 

For 50 vol% emulsions, there was a difference in an amount 

of the imbibed permeants as well as the height of their 

penetration in the sorptive material (Table II-III, Fig. 4). 

However, as shown in Fig. 5–Fig. 6, the rate of the discussed 

process was the same for both represented emulsions 

stabilized by the different amount of the surfactant. 

In case of the dispersed phase concentration of 30 vol%, 

the rate of the imbibed mass change versus the height 

decreased for emulsions with φs= 5 vol% in comparison with 

another type (Fig. 5–Fig. 6). In contrast, the highest values of 

the maximal imbibed mass and height of penetration were 
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obtained for this 30 vol% emulsion (Table II-III, Fig. 5–Fig. 

6). The slowing down was observed after him ≥0.04 m. The 

tendency revealed in case of 30 vol% emulsions was also 

typical for 10% emulsions, but at him≥0.02 m (Fig. 5–Fig. 6). 
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Fig. 5. Changes of an imbibed mass in a sorbent vs increase of front height 

for emulsions with different dispersed phase concentration (φs=1 vol%). 
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Fig. 6. Changes of an imbibed mass in a sorbent vs increase of front height 

for emulsions with different dispersed phase concentration (φs=5 vol%). 

  

To conclude, the rate of an imbibed mass increased with the 

rise of a liquid front height, depended significantly on an 

amount of the added non-ionic surfactant, but only in case 

when its concentration was more than 1 vol% and the 

dispersed phase in an emulsion was lower than 50.vol%. 

C. Changes of the Dispersed Phase Concentrations versus 

the Height  

The changes of the dispersed phase concentrations versus 

the height of an imbibed emulsion front are shown in Fig. 7–9. 

On the graphs, the vertical axis represents the normalized 

values of the dispersed phase concentration which were 

calculated as a ratio φim/φd where φim is defined as the 

experimentally obtained value of the inner phase 

concentration in an imbibed emulsion. 

For all investigated liquids, the obtained concentrations of 

dispersed phase were lower in case of φs=1 vol%, and 

consequently, the highest were observed for φs=5.vol%. 
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Fig. 7. Changes of the emulsions concentration vs height for different 

fractions of surfactant (φd =10 vol%).  
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Fig. 8. Changes of the emulsions concentration vs height for different 

fractions of surfactant (φd =30 vol%). 
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Fig. 9. Changes of the emulsions concentration vs height for different 

fractions of surfactant (φd =50 vol%). 

 

At the height him≤0.02 m, the concentration of an imbibed 

emulsion φim exceeded its initial value φd, but only if the 

surfactant was added in the amount of 2 vol% or 5 vol%. 

However, at him=0.08 m, the obtained values of the dispersed 

phase concentration were almost identical for emulsions with 

different surfactant fractions, but the same fraction of the 

inner phase (Fig. 7–Fig. 9). 
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In case of 30% and 50% emulsions, the curves describing 

the changes of a concentration, beside φs=1 vol%, were 

relatively close to each other (Fig. 7–Fig. 9). It proves that for 

emulsions with a higher dispersed phase concentration, i.e. 

φd≥30 vol%, the increase of the surfactant concentration had 

little effect on the investigated process. 

To sum up, the augmentation of a non-ionic surfactant 

fraction up to 5.vol%, provided the increasing of emulsions 

concentration versus the height of their penetration compare 

to others with φs<5 vol%.  

D. Changes of the Emulsion Viscosity versus the Height 

The observed changes of the dispersed phase concentration 

with the height can influence on viscosity of a penetrating 

emulsion and therefore, its penetration into porous structures. 

The obtained results concerning changes of the emulsions 

viscosity versus the height are plotted in Fig. 10–Fig. 12. 

The effect of the emulsifier addition in the amount of 

5.vol% was relative increasing of an imbibed emulsion 

viscosity compare to its initial value. This phenomenon was 

observed at height him≤0.02 m and can be explained by the 

increase of the imbibed emulsion concentration as shown in 

Fig. 7–Fig. 9.  
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Fig. 10. Changes of the viscosity vs height for emulsions with different 

inner phase concentrations (φs=1 vol%). 
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Fig. 11. Changes of the viscosity vs height for emulsions with different 

inner phase concentrations (φs=2 vol%). 
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Fig. 12. Changes of the viscosity vs height for emulsions with different 

inner phase concentrations (φs=5 vol%). 

 

However, at him≥0.02 m, the viscosity of an imbibed 

emulsion decreased with the rising of their front height in a 

sorbent. This tendency was typical for all investigated 

two-phase liquids.  

There is a significant difference between the viscosity 

changes versus the height for emulsions with φs≥2 vol% 

compare to the emulsions with lower fraction of the surfactant. 

At him≥0.08 m, the obtained viscosity values were almost the 

same for all emulsions with surfactant concentration of 2 

vol% and 5 vol%. In case of φs≥1 vol%, higher results were 

observed for 50% emulsions, but only at the height less than 

0.04 m. 

To sum up, the changes of viscosity as the opposite force to 

the capillary suction-pressure, can influence on the imbibition 

process, and consequently, should be taken into consideration 

within its description and modeling.  

 

IV. CONCLUSION 

To sum up, an amount of the added non-ionic surfactant 

influenced on rheological properties of the investigated 

liquids. For example, the emulsions with a low dispersed 

phase concentration, i.e. φd<30 vol%, and the surfactant 

volume fraction of φs<2 vol% behaved as Newtonian liquids, 

while at φd.≥30.vol% and φs≥2 vol%, they exhibited 

properties of non-Newtonian liquids.  

The process of porous structures imbibition with 

surfactant-stabilized emulsions depended on both the initial 

concentrations of the inner phase and an emulsifying agent. It 

revealed the increasing of mass and height of an imbibed 

emulsion with the raise of the surfactant fraction. In contrast, 

investigated parameters decreasing was observed 

simultaneously with an augmentation of the dispersed phase 

concentration, and the supposed reason for this can be the 

augmentation of viscous drag force.  

Moreover, for emulsions with φd<50.vol% and φs>1 vol%, 

the rate of the imbibed mass increase with the height of an 

emulsion penetration, depended significantly on a 

concentration of the used non-ionic emulsifying agent. 

 The obtained results also allowed to conclude that at the 
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him≥0.02 m, the inner phase concentration and viscosity of an 

imbibed emulsion decreased versus the height of its front in a 

porous medium in all investigated cases. 

The observed variation of the dispersed phase 

concentration as well as the viscosity of the penetrating 

multiphase liquids can be a factor influencing on a process of 

their penetration thought porous oleophilic/hydrophobic 

structures.  
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