
  

  
Abstract—A moving mesh finite element method is studied 

for the numerical solution of a phase-field model for brittle 
fracture and hydraulic fracture. In the phase-field modeling, a 
continuous phase field variable is introduced to describe the 
unbroken or broken status of the material, which can model 
fractures without explicitly tracking discontinuous 
displacement fields. It has the advantages of being able to 
handle complex cracks, crack propagation, and creation of new 
cracks more easily. It is noted that the parameter , which 
describes the width of smeared cracks, should be chosen small 
for the model to be sufficiently accurate. On the other hand, the 
mesh size ( ) should be chosen small typically satisfying  
or at least . This deems it necessary to use mesh adaptation 
for an efficient numerical simulation. Moreover, cracks 
propagate under continuous load, which means the mesh must 
adapt to the evolving cracks dynamically. In this talk we will 
employ the moving mesh partial differential equation approach 
for dynamic mesh adaption. Numerical examples will be 
presented to show that the moving mesh finite element method 
is able to adaptively capture the crack propagation and handle 
multiple crack systems. 
 

Index Terms—Brittle fracture, hydraulic fracture, 
phase-field model, moving mesh, mesh adaptation.  
 

I. INTRODUCTION 
In the recent years, tight oil and shale gas play an important 

role in energy security. Shale reservoirs typically have 
ultra-low permeability, low porosity, and large diversity of 
gas occurrence. These features make shale gas or oil 
extraction extremely difficult and often require large-scale 
hydraulic fracturing technologies to achieve economic 
development. One critical process to increase the reservoir 
stimulated volume and thus improve ultimate recovery is to 
dilate and aggressively shear natural fractures and then 
connect them with the main hydraulic fracture to form a 
fracture network. One powerful tool to understand the 
physical principles behind those technologies is numerical 
simulation. 

The existing models can be roughly categorized into two 
groups, discrete crack models and continuum crack models. 
In the former group, cracks are described as moving 
boundaries and represented along edges of mesh elements. 
One major challenge for those models is to track the moving 
discontinuity of the displacement field caused by the 
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evolution of cracks. On the other hand, continuum crack 
models treat cracks as smeared regions and do not rely on 
explicit description of creaks. 

The phase-field modeling is a commonly used type of 
continuum crack model. In the phase-field modeling, a 
phase-field variable d, which depends also on a parameter 
describing the actual width of the smeared cracks, is used to 
indicate where the material is cracked and where the material 
is undamaged. Distinctive features of the modeling include 
the following. First, sharp but smooth interfaces (instead of 
discontinuities) are now introduced into the displacement 
field. Secondly, fracture initiation and propagation are 
completely determined by a coupled system of partial 
differential equations based on the energy functional. Lastly,
generation and propagation of complex fracture networks do 
not require explicitly keeping track of fracture interfaces.

Since it was first proposed by Bourdin et al. [1], [2], the 
phase-field modeling for brittle and hydraulic fracture has 
extracted considerable attention and significant progress has 
been made; e.g., see [3]-[10]. Nevertheless, solving those 
models efficiently and robustly remains a challenging task.

The parameter that describes the width of smeared cracks, 
is required to be very small in order to obtain reasonably 
accurate solutions. Moreover, the Γ-convergence of the 
energy functional of the phase-field model requires the mesh 
size to satisfy h l

[7], which is difficult to fulfill when 
uniform meshes are used. The best strategy is to use mesh 
adaptation which places more mesh points around localized 
features while using less points in other regions. Moreover, 
cracks can propagate, and new cracks can be created. Thus, 
dynamic mesh adaptation strategies should be used to 
concentrate mesh points around those evolving features.

We plan to employ the MMPDE moving mesh method for 
dynamic mesh adaptation. The MMPDE method, developed 
by Huang and his co-workers (e.g., see [11], [12]), is 
specially designed for time dependent problems and 
amenable to the numerical solution of fracture problems. 
Compared to other moving mesh methods, it has several 
advantages including (a) it works for any convex or concave 
domain; (b) the mesh is guaranteed to stay non-singular (and 
thus no crossing or tangling); (c) it is relatively simple to 
implement; and (d) it works with a large class of objective 
functions for mesh adaptation and quality control.

II. PHASE-FIELD APPROACH

A. Brittle Fracture
We first describe the phase-field modeling for brittle 

fracture. Denote the displacement vector by u. Then the strain 
tensor is given by

                        (1)
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For isotropic material without damage, the elastic energy 
density due to strain is given by Hooke’s law, i.e., 

                (2) 

where λ and μ are the Lame constants. The stress tensor is 
related to the strain tensor by 

                  (3) 

The variation of the total energy  is 

 (4) 

The weak formulation becomes 

                        (5) 

If we add the body force vector f, we have  

                (6) 

The boundary conditions can be defined by prescribing the 
surface traction   or displacement : 

 
where  and . 

We now consider the situation with the presence of cracks. 
Denote the set of cracks by Γ. Then, the total fracture energy 
can be expressed as 

                            (7) 

where 𝑔𝑐  is the fracture toughness which is the amount of 
energy needed to create a unit area of fracture surface. 

The phase-field modeling uses a phase-field variable 
𝑑(𝑥, 𝑡), which depends also on a parameter  describing the 
actual width of the smeared cracks. (The dependence on  is 
omitted for notational simplicity.) This function is smooth, 
has the range in [0, 1], and is considered as a smeared 
characteristic function of Γ which is 0 or close to 0 near the 
cracks and 1 away from the cracks (see Fig.1(a)). The total 
fracture energy is approximated by the smeared total fracture 
energy 

          (8) 

The elastic energy also needs to be modified in presence of 
cracks. To describe this, we define the decomposition of a 
scalar function f as 

 
For a symmetric tensor ε with the eigen-decomposition 

, we define 

                             (9) 

where 
 

ε+ is the tensile strain components which contribute to the 
damage process resulting in fracture while ε− is the 
compression strain components which do not contribute to 
the damage process resulting in fracture. A commonly used 
model, which is inspired by damage models where a 
degradation function 𝑔 = 𝑔(𝑑)  is used to describe the 
reduction of the stiffness of the bulk of the solid, is given by 
 

                (10) 

where 

 
The degradation function is required to satisfy the 

following properties: 

 
A commonly used degradation function is . 

Thus, the total energy is 

 (11) 

where 𝑘𝑙 ≥ 0  is a (small) regularization constant. The 
corresponding weak formulation for u and d reads as 

 (12) 

where the stress tensor is given by 

   (13) 

Note that  has been replaced by 

                       (14) 

to ensure crack irreversibility in the sense that the cracks can 
only grow. 

B. Pressurized Hydraulic Fracturing Models 
Currently there exist two types of hydraulic fracturing 

models, pressurized [3] and fluid-filled [10] ones. As a first 
attempt, we focus on pressurized hydraulic fracturing models; 
see Fig. 1(b). For this type of models, the pressure 
distribution, pf , is assumed to be prescribed on cracks. We 
need to consider the effects of porosity since shale reservoirs 
are porous media. Then, the total energy is given by 

 (15) 

where αB ∈ [0,1] is Biot’s coefficient, pr is the reservoir 
pressure, ∂Ωt is the part of boundary associated with 
Neumann’s boundary conditions, and τ = σ · n with n being 
the unitary outward normal to Γ. We have σ · n = pf n on Γ, 
and 

     (16) 
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Then, we can rewrite the total energy as 

 (17) 

For the pressure terms in the phase-field approach we 
follow [3]: 

            (18) 

The phase-field model for the above energy reads as 

(19) 

Taking the variation, we can obtain a weak formulation for 
u and d.  

 

 
(a) brittle fracture by the phase-field approximation  (b) pressurized fracture 
Fig. 1. A sketch of the problem setting for brittle and pressurized hydraulic 

fracturing models. 
 

III. ADAPTIVE FINITE ELEMENT SOLUTION 
In this section we describe the adaptive finite element 

solution of the phase-field models for brittle fracture and 
hydraulic fracturing using the MMPDE moving mesh method. 
The basic idea of variational mesh adaptation is that mesh 
generation and adaptation are determined by a coordinate 
transformation, i.e., 

 
This can be obtained as a minimizer of a functional: 

                 (20) 

where : Jacobian matrix, : metric tensor 

which provides the information needed to determine size, 
shape, and orientation of mesh elements. The objective of the 
MMPDE moving mesh method is to generate an adaptive 
mesh as a uniform one in the metric tensor . Such an 
-uniform mesh satisfies the equidistribution and alignment 
conditions (e.g., see [12], [13]), 

    (21) 

Then, an energy functional based on these conditions can 
be rewritten as (e.g., see [14]) 

    (22) 

where  and  are two dimensionless 
parameters. We then follow the MMPDE approach [15], [16] 
and define the moving mesh equation as a gradient flow of 

: 

                               (23) 

where  is a positive parameter for adjusting the time scale of 
mesh movement and P is a balancing function used to make 
the MMPDE to have some desired invariance properties. 
Since we have 

                              (24) 

Combine the two equations into a single one. We can get 
the mesh velocity  

  (25) 

As mentioned above, The metric tensor  is the key to the 
success of the MMPDE method since it provides the 
information of the size, shape, and orientation of mesh 
elements needed in the adaptive mesh movement. In our 
computation, we choose the metric tensor based on the 
Hessian of the phase-field variable 

       (26) 

where  is a recovered Hessian of  and 
. Since the metric tensor is based 

on the Hessian of the phase-field variable , the mesh 
elements will be concentrated in the crack regions where the 
curvature of  is large. 

 

IV. NUMERICAL RESULTS 
In this section we show numerical results obtained with the 

moving mesh finite element method for three examples. The 
first example is a benchmark problem used in the existing 
literature to examine mathematical models for brittle fracture. 
The second example is chosen to test the ability of our 
method to handle complex cracks. The last example is used to 
demonstrate the capabilities of our method to deal with 
pressurized hydraulic fracture propagation. 

 

 
                (a) tension test                                   (b) shear test 

Fig. 2. Geometry and boundary conditions for single edge notched specimen, 
(a) tension test and (b) shear test. 

A. Single Edge Notched Tension and Shear Test 
We first consider the single edge notched tension and shear 

test from Miehe et al. [8], with the geometry and boundary 
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conditions being shown in Fig. 2. For the tension test, the top 
edge is fixed along x-direction while a uniform y- 
displacement U is increased with time. For the shear test, the 
top edge is fixed along y-direction while a uniform 
x-displacement U is increased with time. For both tests, the 
solid is assumed to be homogeneous isotropic with properties 
as elastic bulk modulus λ = 121.15kN/mm2 and shear 
modulus μ = 80.77kN/mm2. The fracture toughness is chosen 
to gc = 2.7×10−3kN/mm. 
 

 
 

 
 

 
(a)  mm            (b)  mm 

Fig. 3. The mesh and contours of the phase-field and von Mises stress 
distribution during crack evolution for the tension test. 

 (l = 0.0075 mm, N = 6, 400). 
 

 
 

 

 
(a)  mm         (b)  mm 

Fig. 4. The mesh and contours of the phase-field and von Mises stress 
distribution during crack evolution for the shear test.  

(l = 0.0075 mm, N = 6, 400). 
 
For the tension test, two displacement increments have 

been chosen for the computation, mm before 
the fracture initiation and mm afterwards. 
For the shear test, we choose mm. We use  
= 0.0075 and a triangular mesh resulting from a rectangle 
mesh of size 41 × 41 in the computation. Typical adaptive 
meshes and contours of the phase-field and von Mises stress 
distribution during crack evolution are shown in Figs. 3 and 4 
for the tension and shear tests, respectively. As we can see, 
for the tension test, the mesh stays symmetric near the crack 
for all time, while for the shear test, mesh concentration is 
adequate especially during the turning process of the shear 
crack. This property is important for handling complex crack 
propagation. They also demonstrate the ability of the 
MMPDE method to concentrate the mesh points around the  
cracks and follow its evolution. 

For comparison purpose, the surface load vector on the top 
edge was introduced 

                       (27) 

where n is the unit outward normal to the top edge. The 
load-deflection curves with a uniform mesh (N = 490,000) 
and an adaptive mesh (N = 6,400) are shown in Fig. 5. As we 
can see, they are comparable with each other and agree well 
with the results obtained with much finer meshes in [8]. The 
cost between moving mesh and uniform mesh can be clearly 
seen in Table I.  
 

 
Fig. 5. The load-deflection curves for different meshes for l = 0.0075mm for 

the tension test. 
 

TABLE I: AVERAGE CPU TIME FOR ONE TIME STEP (IN SECONDS) 

Mesh size  CPU 
for d 

CPU 
for u 

CPU for 
mesh 

Total CPU 
time 

Moving mesh 6,400 5.4 32.0 103.8 141.1 
Uniform mesh 490,000 47.9 1292.0  1340.0 

 
Next, we consider the situation with complex cracks. The 

geometry and boundary conditions are shown in Fig. 6. For 
the three-crack and six-crack problems, the material 
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parameters are the same as previous examples except 
 KN/mm for the six-crack problem. The 

mesh and contours of the phase-field and von Mises stress 
distribution during crack evolution are shown in Figs. 7 and 8, 
respectively. As can been seen, the mesh points dynamically 
concentrate around the cracks and capture the junction 
process of the multiple cracks. Under continuous shear load 
for the three-crack problem, one of the tip for Crack 2 
activates earlier due to its longer length and larger polar angle. 
With a closer distance, Crack 1 connects to Crack 2. Crack 3 
is limited to propagation due to the interaction of other cracks. 
For the more complex situation under tension load with the 
six-crack problem (see Fig. 8), Crack 4 and Crack 3 have 
smaller polar angles and a closer distance, which results in 
the early crack merging. At later stages, Crack 3 connects to 
Crack 5 and the right side of Crack 5 has propagated to the 
edge, which leads to the whole plate to lose strength. 

Finally, we employ our MMPDE moving mesh method for 
propagating pressurized fracture and consider two parallel 
fractures that interact with each other. Here, the material 
parameters are the same as previous examples. The fracture 
propagates by a given pressure that increases linearly in time, 
i.e., . We first consider a square domain with a 
pre-existing fracture in the middle. Fig. 9 shows the mesh and 
contours of the phase-field distribution during crack 
evolution by given increasing pressure. The fracture 
propagation takes place when the pressure reaches the critical 
propagation pressure. Next, we consider the situation with 
two parallel fractures. As can be seen in Fig. 10, due to the 
stress shadowing effect, the two parallel fractures interact 
with each other if the distance between them is sufficiently 
close. When the distance is large, influence is almost 
invisible; see Fig. 11. 

 

 
(a) three cracks                                  (b) six cracks 

Fig. 6. Geometry and boundary conditions for the test with complex cracks, 
(a) three cracks and (b) six cracks. 

 

 
 

 

 
      (a)  mm      (b)  mm     (c)  mm 

Fig. 7. The mesh and contours of the phase-field and von Mises stress 
distribution during crack evolution for the three cracks problem. 

 (l = 0.0075 mm, N = 10, 000). 
 

 
 

 
 

 
      (a)  mm       (b)  mm        (c)  mm 

Fig. 8. The mesh and contours of the phase-field and von Mises stress 
distribution during crack evolution for the six cracks problem. 

 (l = 0.0075 mm, N = 40, 000). 
 

 
 

 
Fig. 9. The mesh and contours of the phase-field distribution during crack 

evolution by given increasing pressure. 
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Fig. 10. The mesh and contours of the phase-field of two parallel fractures by 

given increasing pressure. 
 (distance between the fractures: mm). 

 

 
 

 
Fig. 11. The mesh and contours of the phase-field and von Mises stress 

distribution during crack evolution for the three cracks problem. 
 (distance between the fractures:  mm). 

 

V. CONCLUSION 
In the previous sections we have studied the moving mesh 

finite element solution of phase-field models for brittle 
fracture and hydraulic pressurized fractures. We have 
demonstrated that the phase-field approach has its ability to 
handle complex fracture including crack joining and 
branching phenomena. Particularly, the MMPDE moving 
mesh method has been used to dynamically concentrate mesh 
points around propagating cracks. The mesh concentration is 
adequate especially during the turning process of the shear 
cracking and stay symmetric near the crack for the tension 
crack. This property is important to the successful capture of 
crack propagation for multiple crack systems. Compared to 
uniform meshes, the computational efficiency is significantly 
improved by the moving mesh method (about 10 times faster 
in average in terms of CPU time for one time step).  
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