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Abstract—The corrosion behavior of austenitic stainless steel 

was investigated under both static and dynamic conditions. In 

this study, corrosion behavior of welded and unwelded 

austenitic stainless steels, SS304, SS310, SS316 were 

investigated using three different stirring speeds; 100, 200, 350 

rpm and were subjected to two different corrosive 

environments; seawater (3.5% NaCl), and acidic ferric chloride 

(FeClᴣ). The rate of corrosion was measured using 

spectrophotometry. The microstructure was examined using 

optical microscopy. Experimental results indicated that the 

highest corrosion rate was observed in acidic ferric chloride, 

8.56 mg. min
-1

.cm
-2

 for SS304 at 350 rpm speed (high 

mechanical stress condition), compared to seawater under the 

same conditions, 7.96×10
-4

 mg. min
-1

.cm
-2

. Welded stainless steel 

area were highly sensitive to the corrosive environment as a 

result of the increasing thermal stresses in both the weld zone 

and the heat affected zone (HAZ). Also, the corrosion rate was 

found to increase with increasing the stirring speed due to its 

effect on the mass transfer and mechanical stresses. 

 
Index Terms—Corrosion rate, seawater, austenitic stainless 

steel, corrosion behavior, welded stainless steel.  

 

I. INTRODUCTION 

In recent years, stainless steels have been widely used in 

the metal working industry especially in the construction 

sector. Austenitic stainless steels are characterized by their 

relatively high corrosion resistance and excellent properties 

which play an important role in many industrial and domestic 

applications. Welding is often used in the manufacturing of 

engineering components which may cause the microstructure 

and mechanical properties of the welded zones to be different 

from the base metal [1], [2]. The base of various 

stainless-steel alloys is the binary Fe-Cr system, the 

properties of which are modified by the addition of several 

major alloying elements such as Ni, Mo and Mn as well as 

minor ones such as C and N. The alloy systems mostly used 

in austenitic stainless steels are the Fe-Cr-Ni alloys which are 

susceptible to localized corrosion attacks of which many 

problems are caused by sensitization leading to premature 

failure (e.g. [3]-[6]).  

Austenitic stainless steels have many applications and uses 

in industrial fields but are usually subjected to failures 

resulting from their exposure to various corrosive 
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environments [2], [7]-[10]. In order to understand the causes 

of these failures, the behavior of stainless steel in different 

corrosive environments needs to be studied carefully; not 

only under static working conditions but also when subjected 

to dynamic loads. Previous investigations for welded and 

unwelded austenitic stainless steels used specific 

environments in their methods, without studying the effect of 

applied stresses [1], [5]-[7], [11]-[13]. The present study 

investigates the corrosion behavior of austenitic stainless 

steel in different corrosive media. Furthermore, stresses have 

been applied by undergoing different stirring speeds in order 

to promote pitting and stress corrosion cracking to 

understand the effect of welding and dynamic loads on the 

corrosion behavior. The main objectives of this study are 

therefore to evaluate the corrosion rate using 

spectrophotometry for the three types of austenitic stainless 

steels after being exposed to stresses, initiated using different 

stirring speeds, in two different corrosive media; seawater 

(3.5% NaCl solution) and acidified ferric chloride solution. 

Evaluation of the corrosion rate and corrosion behavior of the 

three types of austenitic stainless steels is performed for 

welded and unwelded specimens. Microscopic examination 

of the three types of austenitic stainless steels is done for the 

welded and unwelded specimens to correlate the results 

obtained to the microstructure observed. 

 

 
Fig. 1. Schematic of experimental setup, 1: Stirring Shaft, 2: Impeller, 3: 

Drive Motor, 4: Speed Control Unit, 5: Corrosive Electrolyte Solution and 6: 

Glass Container. 

 

II. EXPERIMENTAL METHODS 

The corrosion behavior of welded stainless steel 300 series 

for different grades; SS304, SS310, SS316, is investigated 

when the specimens were under stress; and exposed to 

different corrosive environments; namely, seawater (NaCl 

3.5%), and acidic ferric chloride solution. The specimens 

were then tested in the as-received, polished and etched 

conditions. A number of specimens; three welded and three 
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unwelded grades of austenitic stainless steels were examined. 

The impeller arms were perpendicularly arc welded to a 

stainless-steel rod. Also, the same dimension of unwelded 

impeller arms were fitted to the rod perpendicularly. The 

impeller arms were covered with epoxy except at the welded 

area to be tested in order to study the effect of welding. The 

welded and unwelded stainless steel samples were exposed to 

two different aqueous solutions while stirring at 3 different 

rotational speeds. Etching was carried out in a glyceregia 

solution, consisting of HCl, glycerol, HNOᴣ with a ratio of 3: 

2:1 for microstructural examination. The experimental 

apparatus is as illustrated in Fig. 1. 

The impeller rotating rod was all protected except for the 

area connecting the blades to the rod which was the area 

available for the corrosion test 

 

III. RESULTS AND DISCUSSION 

The corrosion rate was calculated from the iron weight loss 

over the period of time and the exposed surface area of the 

rotating impeller rod. The corrosion rate was calculated using 

the following expression [14], [15]: 




LW
CR

A t
 ,                                 (1) 

where; CR is the corrosion rate (mg.min-1.cm-2), WL is the 

iron weight loss (mg), A is the exposed area of SS rod (cm²), 

and t is the time (min). 

Typical results of the corrosion rate as a function of time 

for welded and unwelded steel grades in NaCl solution are as 

shown in Figs 2 to 4. Fig. 5 shows the effect of stirring speed 

on the corrosion rate for all welded and unwelded grades in 

NaCl solution. The highest rate of corrosion was obtained for 

the SS304 at the highest rate of stirring, 350 rpm in the 

welded condition (4.42×10-4 mg.min-1.cm-2). This represents 

the highly sensitive case for the corrosion behavior in NaCl 

solution. On the other hand, the lowest corrosion rate was 

obtained in the unwelded SS316 sample (0.44×10-4 

mg.min-1.cm-2).  

 

 
Fig. 2. Corrosion rate of welded and unwelded SS304 steel in NaCl solution 

at different stirring speeds. 

 

It was clear also that all welded specimens exhibited an 

increased corrosion rate compared to the unwelded 

conditions. 

 
Fig. 3. Corrosion rate of welded and unwelded SS310 steel in NaCl solution 

at different stirring speeds. 

 

 
Fig. 4. Corrosion rate of welded and unwelded SS316 steel in NaCl solution 

at different stirring speeds. 

 

 
Fig. 5. Effect of stirring speed on corrosion rate for all welded and unwelded 

stainless steel grades in NaCl solution after 90 min. 

 

Similarly, typical results of the corrosion rate as a function 

of time for welded and unwelded specimens in acidified 

ferric chloride solution are as shown in Figs 6 to 8. Fig. 9 

shows the effect of stirring speed on the rate of corrosion for 

all welded and unwelded grades in acidified FeCl3 solution. It 

was clear that welded SS304 steel exhibited the highest 

corrosion rate (3.80 mg.min-1.cm-2). This result is 

approximately four orders of magnitude higher than the case 

of the NaCl solution. The lowest corrosion rate was again 

obtained for the unwelded SS316 steel (0.21 mg/min-1.cm-2). 

This effect is expected because of the presence of the chloride 

ions which have a special damaging effect on passive layer 

on the stainless-steel surface [13]. 
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Fig. 6. Corrosion rate of welded and unwelded SS304 steel in acidified ferric 

chloride solution at different stirring speeds. 

 

 
Fig. 7. Corrosion rate of welded and unwelded SS310 steel in acidified ferric 

chloride solution at different stirring speeds. 

 

 
Fig. 8. Corrosion rate of welded and unwelded SS316 steel in acidified ferric 

chloride solution at different stirring speeds. 

 

Corrosion micro-pits could be clearly observed in the 

microstructural examination of welded SS304 steel, see Fig. 

10. However, the case of SS310 and SS316 did not show the 

same effect (see Fig. 11). 

The acidic ferric chloride is a highly aggressive corrosive 

environment since it is a strongly oxidizing solution. 

Therefore, the rate of corrosion is expected to increase 

significantly. This is clearly shown in Figs 6-9. For this 

reason, as shown in micrograph Fig. 10, a clear damage is 

taking place in the stainless-steel structure. 

 
Fig. 9. Corrosion rate for all welded and unwelded grades in acidified ferric 

chloride solution at different stirring speeds after 90 min. 

 

 
Fig. 10. Optical micrograph of welded SS304 steel in acidified ferric 

chloride solution after 90 min. 

 

 
Fig. 11. Microscopic examination of welded SS310 in NaCl solution after 90 

min. 

 

The corrosion rate as a function of the stirring and stirring 

speed show a similar effect. The seawater (NaCl) solution has 

a similar effect due to the presence of the chloride ions. 

However, the rate is shifted to a much higher value (orders of 

magnitude higher corrosion rate) because of the damaging 

effect of the acidified FeClᴣ solution which accelerates the 

rate of corrosion significantly.

  

 

IV. CONCLUSION 

Corrosion rate for all studied corrosive media decreases 

with time till it reaches a plateau due to the fact that a steady 

state condition is reached for the corrosion reaction. The 

highest corrosion rate was observed in acidic ferric chloride 

while, the seawater has a special effect due to the presence of 

Cl- ions. Increasing the forced convection effect in solution 

by increasing the stirring speed results in an accelerated mass 

transfer rate and a resulting increase in the rate of corrosion 
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and this is observed in all cases. Welded stainless steel are 

highly sensitive to the corrosive environment. As a result of 

increasing the thermal stresses in both the weld zone and the 

heat affected zone (HAZ). 
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