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Abstract—Internal corrosion caused by Sulfate-Reducing 
Bacteria (SRB) poses a critical challenge to shale gas gathering 
pipelines. This study combines experimental analysis and a 
Bayesian network-based corrosion probability model to explore 
SRB corrosion mechanisms and predict corrosion rates. 
Experimental results demonstrate a direct correlation between 
SRB concentration and accelerated corrosion rates. The 
proposed Bayesian model integrates factors such as SRB 
concentration, temperature, flow rate, and pH, validated 
against field data with relative errors <35%. This research 
provides theoretical support for pipeline maintenance 
strategies. 

Keywords—shale gas pipeline, SRB detection, microbial 
corrosion, bayesian network  

I. INTRODUCTION

Sulfate-reducing bacteria are widely distributed 
parthenogenetic anaerobic bacteria that use organic matter or 
iron as an electron donor and sulfate as an electron acceptor. 
It reduces sulfate to H2S and induces chemical, 
electrochemical and other chemical reactions that ultimately 
cause corrosion of metals [1]. 

Sulfate-Reducing Bacteria (SRB)-induced internal 
corrosion represents a significant threat to the integrity and 
longevity of shale gas gathering pipelines, driven by complex 
microbial-electrochemical interactions under anaerobic 
conditions. While existing studies have highlighted SRB’s 
role in accelerating corrosion, limitations persist in 
quantitatively linking microbial activity to corrosion rates 
and integrating multifactorial influences (e.g., temperature, 
pH, flow dynamics) into predictive frameworks. This study 
addresses these gaps by synergizing experimental SRB 
concentration analysis with a Bayesian network-based 
probabilistic model, which holistically evaluates critical 
corrosion drivers and predicts failure risks. Validated against 
field data with relative errors below 35%, the proposed model 
offers a robust tool for optimizing pipeline maintenance and 
enhancing operational safety in shale gas production systems. 

II. LITERATURE REVIEW

The development of shale gas abroad is relatively early for 
domestic. According to the research, more literature has been 
studied and found that the common types of shale gas 
pipeline corrosion are CO2 corrosion and SRB corrosion. 
Ye [2] studied the synthetic behavior of N80 steel in CO2 
saturated formation water by weightlessness test, 
electrochemical test and surface characterization. The results 
showed that the corrosion rate of N80 steel showed a trend of 

slowing down and then slowing down with increasing 
temperature, reaching a maximum around 60 °C. Fatah [3] 
and others developed an empirical equation for SRB 
corrosion based on metabolizing species, and used the 
equation to predict the depth of pitting corrosion caused by 
SRBs. Yang [4] applied water sample analysis and XRD 
analysis to the buried pipeline from the sink skid of the Jiao 
Shibei. A gas gathering station to the production separator, 
bacterial culture and other methods, and found that the main 
cause of pipeline perforation is microbial corrosion. 

According to the research results, it is known that different 
operating conditions and pipeline materials will produce 
different types of corrosion, therefore, in order to effectively 
guarantee the safe operation of shale gas gathering and 
transportation system, the use of corrosion failure probability 
prediction method, so as to effectively grasp the corrosion 
state and parameters of the gathering and transportation 
pipeline, is the most important to guarantee the shale gas 
gathering and transportation pipeline and even the whole gas 
field’s safe, economic and efficient operation. 

III. BACTERIAL COUNTING EXPERIMENTS

A. Experimental Materials

The water collected at the separator of A# and B#
gathering pipeline of a shale gas field in Sichuan Province 
was used as the experimental water samples, which were 
separated, purified, enriched and cultured to obtain the 
experimental strains. Part of the experimental water samples 
and reagent bottles required for the experiment are shown in 
Figs. 1 and 2. 

Fig. 1. Experimental water samples. 

Fig. 2. Reagent bottles required for the experiment. 
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B. Experimental Apparatus 

The main instruments required for the bacterial counting 
experiment mainly include high temperature and high 
pressure sterilizer (XFS-280CB), standard two-person 
single-side purification workbench (SW-CJ-2FD), and 
electrically heated constant temperature incubator 
(303-00AB), and the diagrams of the experimental 
instrumentation are shown in Figs. 3–5. 

 
Fig. 3. Autoclave sterilizer. 

 
Fig. 4. Ultra-clean bench. 

 
Fig. 5. Electrothermal constant temperature incubator. 

   

C. Experimental Methods 

1) Dilute the sample 

SRB (Sulfate Reducing Bacteria) Bacterial strain 
determination was performed using the national standard of 
the People’s Republic of China GB/T14643.5-2009 [5] 
“Determination of Bacterial Algae in Industrial Circulating 
Cooling Water Part 5: Determination of Sulfate Reducing 
Bacteria MPN Method”. Dissolve the above solvents in 1L of 
water, adjust the pH to between 7.0 and 7.4 with NaOH 
solution or NaCl solution, and dispense in 500 mL graduated 
triangular bottles of no more than 350 mL each, with the 
mouths of the bottles stuffed with cotton and wrapped in kraft 
paper, and sterilize them with an autoclave at 120 °C for 
15 min. (Pay attention to the sterilization of the graduated 
pipettes, test tubes, and sampling bottles.), The medium 
composition is shown in Tables 1 to 3: 

 
Table 1. SRB liquid medium components 

Reagent Name Content (g/L) Reagent name Content (g/L) 

Dipotassium hydrogen phosphate 0.5 Magnesium sulfate 2.0 

Sodium sulfate 0.5 Sodium lactate 3.5 

Ammonium chloride 1.0 Yeast juice 1.0 

Calcium Chloride 0.1 - - 

2) Preparation of IOB (Iron Oxidizing Bacteria) liquid medium 

Table 2. IOB liquid medium composition 
Reagent Name Content (g/L) Reagent Name Content (g/L) 

Magnesium sulfate 0.5 calcium chloride 0.2 

Ammonium sulfate 0.5 Sodium nitrate 0.5 

Dipotassium hydrogen phosphate 0.5 Ammonium iron citrate 10.0 

3) Preparation of TGB (Putrefactive Bacteria) liquid medium 

Table 3. TGB liquid medium composition 
Reagent Name Content (g/L) Reagent Name Content (g/L) 
Sodium chloride 5 peptone (biochemistry) 5 

Beef paste 3 - - 

D. Analysis of Experimental Results 

The presence of the strain is indicated by the production of 
a black precipitate accompanied by the odor of hydrogen 
sulfide, indicated by “+” (positive), and the rest of the test 
tubes are indicated by “−” (negative). It should be noted that 
if the blank sample shows a positive reaction, it indicates that 

there is contamination in the assay process and the assay is 
invalid. Figs. 6–8 show the pictures of enrichment of bacteria 
after 14 days of culturing the extracted liquid from A# 
gathering pipeline. 

The Table 4 below shows the statistics of the three 
bacterial counts after 14 days of incubation. 

 
Fig. 6. Results after 14 d of 10 TGB enrichment. 
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Fig. 7. Results after 14 d of IOB enrichment. 

 

 
Fig. 8. Results after 14 d of 12 SRB enrichment. 

 
Table 4. Statistical results of each bacterial count 

Pipeline number SRB (Sulfate Reducing Bacteria) IOB (Iron Oxidizing Bacteria)  TGB (saprophytic bacteria) 

A# 
+ + + − − −  + − −  

2.5×105 (pcs/mL) 3.0×102 (pcs/mL) 1.2×102 (pcs/mL) 

B# 
+ + +  + − −  + + − 

1.5×105 (pcs/mL) 2.8×102 (pcs/mL) 4.0×103 (pcs/mL) 
 

According to the results of bacterial counting, three kinds 
of bacteria, SRB, IOB and TGB, exist in A# and B# gathering 
pipelines, of which SRB has the highest number and IOB has 
the lowest number. SRB is anaerobic bacteria, and IOB and 
TGB are aerobic bacteria, of which IOB and TGB consume 
O2 when metabolizing, thus providing an anaerobic 
environment for SRB, and it can be speculated that microbial 
corrosion of A# and B# gathering pipelines is mainly 
dominated by SRB, which is the main cause of microbial 
corrosion.  

IV. A BAYESIAN NETWORK-BASED PROBABILISTIC MODEL 

FOR CORROSION 

A. Bayesian Network Overview 

Bayes’ theorem relates the posterior probability of an 
event (i.e., the probability of an event after observation) to the 
prior probability of the event (i.e., the probability before 
observation), the probability of the observation event, and the 
conditional probability of the observation event given the 
occurrence of the event [6]. This can be expressed 
mathematically as shown in Eq. (1): 

           
     

   
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where P (Ai| B) is the posterior probability of the event Ai 
given the observation B; P (Ai) is the prior probability of the 
event Ai before observation B; P (B| Ai) is called the 
likelihood function and is the probability of observing B 
given the occurrence of event Ai. 

In Eq. (1), the denominator represents the probability of 
the observation event and is obtained by summing the 
conditional probabilities of the event given by B. The prior 
probability and posterior probability can be thought of as the 
“cause” and “effect” of a process, respectively. Bayesian 
Networks are often depicted graphically, with multiple 
random variables connected by causal relationships. 

B. Constructing Bayesian Network Model 

In this study, the 1# gathering pipeline of a shale gas field 
in Sichuan is used as an engineering example to develop a 
probabilistic model. To construct the Bayesian Network 

structure, a causal relationship between variables is 
considered, making it simpler to evaluate the probability 
distributions among variables. Therefore, the directed edges 
between variables in the Bayesian Network constructed in 
this study represent causal relationships [7]. 

1)  Node selection and variable set setting 

Based on the investigation of the 1# gathering and 
transportation pipeline, this study found that pipeline 
corrosion mainly includes uniform corrosion (including CO2 
corrosion), local corrosion, and SRB corrosion. Table 5 
presents the main corrosion influencing factors for each 
corrosion mode. Each influencing factor corresponds to a 
node in the Bayesian Network. 

 
Table 5. Main influencing factors for various corrosion modes 

Corrosion mode Main influencing factors 

Uniform corrosion T, CO2, O2 

Local corrosion 
Gas velocity, gas density, fluid velocity, 

liquid holdup, pipe inclination 

SRB corrosion 
SRB quantity, T, CO2 Partial pressure, pH, 

Cl-, SO4
2-, Ca2+, HCO3

- 

2)  Bayesian network learning 

Bayesian Network learning consists of two main types: 
structure learning and parameter learning. Structure learning 
determines the most suitable network structure based on 
existing data, while parameter learning focuses on estimating 
the conditional probability table for each node after the 
structure is established [8]. 

a) Structure learning 
This process aims to identify the appropriate network 

structure based on the study’s nature. It can be performed 
with either complete or incomplete historical data. With 
complete data, structure learning can be achieved through 
methods like Matlab programming or the K2 algorithm. In 
cases of incomplete data, the missing values must be imputed 
before structure learning can proceed. For this study on the 1# 
gathering pipeline, the structure learning process involved 
three steps: (a) initializing incomplete data by random 
generation, (b) refining data and estimating network structure 
using parameter methods, and (c) iterating between structure 
learning and data refinement until the optimal structure is 
found [9]. 
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b) Parameter learning 
Parameter learning involves estimating the probability 

distribution of the Bayesian Network parameters from 
available data. With comple102te data, the Maximum 
Likelihood Estimation (MLE) is used. For incomplete data, 
methods like the Monte Carlo, Gaussian approximation, or 
Expectation-Maximization (EM) algorithms are employed. 
This study utilized the EM algorithm for parameter learning. 
The log-likelihood function of the estimated parameter 
θ [10]: 

 ( ) log ,i
m n

L P X x Y D       (2) 

This can be expressed mathematically as shown in Eq. (2): 
where X represents the unknown hidden variable, Y 
represents the observed variable, and D is the known training 
set. 

The definition q (X=x| Y) is a probability function taking 
any value of [0,1], representing the X=x probability of 
observing the value of Y, so Σ x×q(X=x| Y) = 1. 

Rewrite L as a function of q (X| Y), suppose P (X=x, Y=D) 
is a convex function with extreme values, then according to 
Jensen’s inequality, as shown in Eq. (3):  
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It follows that, first of all, a lower bound on L can be given 
for a particular q (X| Y), so when the function q (X| Y) is 
known, the maximum value of L can be obtained 
theoretically. Second, in order for L to reach its expected 
maximum value, which is the lower bound, it is necessary to 
adjust q (X| Y), in effect, the parameters θ of L itself, so that: 

( , )
( ) log

( )m n

P X x Y D
L q X Y
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 
  ∣

∣
              (4) 

As shown in Eq. (4), the EM algorithm corresponds to the 
above two processes through E and M steps. Expectation Step 
denotes the Expectation of finding the maximum value of L 
when we know. q (X| Y). Maximization Step, for a particular 
parameter θ, is modified q (X| Y) so that L exists.  

The EM algorithm is a continuous iterative process, getting 
a lower bound on the function based on the current parameter 
in step E, updating the parameter in step M, thus modifying q 
(X| Y) continuously to update the lower bound and 
approximating the maximum value of L itself.  

The function q (X| Y) is actually a process of repairing the 

hidden variables through the observed values. Although X 
cannot be obtained directly from the training set, the function 
Q can give the probability of a set of hidden variables 
obtained from the current samples. In the iterative process of 
EM algorithm, if θt represents the parameters of the current 
iteration, and θt+1 represents the parameters of the next 
iteration, because the observed value Y will not change, the 
essence of solving the lower bound of L is to solve the 
parameters of the next iteration when the current parameters 
are given. Thus noting q (X| Y) =P (X| θt), the lower bound of 
function L is Q (θt+1| θt), called the expected likelihood log 
function, and the transformation can be obtained as follows:  

     1 1log ,t t t t
m n

Q P X P X D     ∣ ∣ ∣     (5) 

This can be expressed mathematically as shown in Eq. (5): 
For different models, EM algorithm needs to select different 
expected likelihood functions. For the Bayesian Network 
model, the same logical likelihood function proposed in MLE 
is used to obtain the expected logical likelihood function. 

     1 1log , , ,
N M

t t t ijk
i j k

Q P X x j k D     ∣ ∣     (6)  

As shown in Eq. (6), the process of calculation Q (θt+1| θt) 
corresponds to step E in EM. EM algorithm is an iterative 
convergence process, will stop when θt+1 and θt are equal, but 
in practice, computers use floating-point representation for 
computation, which can lead to slight variations in results due 
to limitations in memory precision. Therefore, when using 
similarity algorithms that converge, a threshold must be set to 
determine when the difference between the two values is 
small enough to stop the algorithm. Additionally, iterative 
algorithms are often influenced by the initial values of the 
parameters, so it is necessary to provide appropriate initial 
values to ensure optimal results. 

3)  Building bayesian networks 

In this paper, a causal graph consisting of 38 nodes is 
constructed based on existing experience and all Bayesian 
network models are modelled and manipulated. The 
modeling process employed a two-stage method, and the 
Bayesian Network inference was performed using the 
variable elimination method. The Bayesian Network models 
were constructed using expert knowledge and experimentally 
obtained data, shown in Fig. 9. 
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Fig. 9. The established Bayesian Network model. 
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4)  Determine the prior probability of the root node 

In a Bayesian Network, the prior probability of the root 
node refers lity derived from historical statistics or expert 
analysis. This probability is only influenced by factors 
directly related to the root node and is not affected by 
external factors. When a large amount of statistical data is 
available, the prior probability of the root node can be 
determined using machine learning. There are two methods 
for determining the prior probability of the root node: manual 

establishment based on expert knowledge and experience, 
and establishment based on data structure. In this paper, a 
Bayesian Network was constructed by combining expert 
knowledge and data structure [9]. 

This paper classifies the root node states into five levels: 
very high (VH), high (H), medium (M), low (L), and very 
low (VL). The criteria for these occurrence probability levels 
are provided in Table 6. 

 
Table 6. Criteria of levels of root node’s occurrence probability 

Probability level Probability interval Center of probability State description 

1 (0,0.2] 0.1 
The probability of corrosion during the service life 

of the pipeline is very low (VL) 

2 (0.2, 0.4] 0.3 
The probability of corrosion during the service life 

of the pipeline is low (L) 

3 (0.4, 0.6] 0.5 
The probability of corrosion during the service life 

of the pipeline is medium (M) 

4 (0.6, 0.8] 0.7 
The probability of corrosion during the service life 

of the pipeline is high (H) 

5 (0.8, 1] 0.9 
The probability of corrosion during the service life 

of the pipeline is very high (VH) 
 

Table 7. Prior probabilities of some variables based on historical data 

Node variables VL L M H VH 
T 0.81094258 0.11584678 0.06225149 0.01090552 0.00005363 

CO2 0.82307614 0.11428207 0.04538675 0.01640020 0.00085484 
Number of SRB 0.82672667 0.11026451 0.02004984 0.04241256 0.00054643 

CO2 partial pressure 0.75998897 0.19264816 0.02712414 0.02001586 0.00022287 
PH 0.77763944 0.14985359 0.05720090 0.01530010 0.00000596 

HCO3
− 0.80329444 0.10381341 0.07930264 0.01351052 0.00007898 

Ca2+ 0.80216057 0.10006297 0.06883110 0.02893526 0.00001010 
SO4

2− 0.81127319 0.11844734 0.05266886 0.01674582 0.00086479 
Cl− 0.82761467 0.13836611 0.02354764 0.01025681 0.00021477 

C. Predicting and Analyzing Pipeline Corrosion 
Probability 

Now that the nodes, network structure and inference mode 
have been determined, the constructed conditional 
probability Table 7, the causal reasoning results of Bayesian 
Network, along with the probability distribution of wall 
thickness loss, are shown in Figs. 10–12, respectively for 
illustration. 

Fig. 10 shows the conditional probabilities obtained from 
Eq. (6) using Bayesian inference. 

Fig. 11 shows the model prediction built by Bayesian 
Network to calculate the interface of the probability value of 
the degree of node wall thickness loss. 

 

 

 
Fig. 10. Construction of conditional probability table of corrosion rate nodes. 
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Fig. 11. The causal reasoning results of Bayesian Network. 
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Fig. 12. The probability distribution of wall thickness loss. 

 

Fig. 12 shows the detailed calculation of the probability of 
corrosion failure corresponding to the degree of wall 
thickness loss, as predicted by the model built using Bayesian 
Network. 

D. Case Study 

Through the constructed Bayesian network to get A #, B # 
two gathering pipeline node wall thickness loss degree of 
corrosion degree calculation results, to get each pipe section 
corresponding to the probability of corrosion failure, and 
with the field situation of corrosion failure probability 
comparison, the results are shown in Figs. 13 and 14. 

 
Fig. 13. Comparison analysis results between predicted and measured values 

of pipeline A#. 

 
Fig. 14. Comparative analysis results of predicted and measured values of 

pipeline B#. 
 

The model predicts corrosion failure probabilities for A# 
and B# gathering pipelines with small errors compared to 
field data. For A#, 6 segments have errors below 20%, while 

5 segments range from 20% to 35%, with the largest error at 
32.15% in segment No. 3. For B#, 8 segments have errors 
below 20%, and 4 segments range from 20% to 35%, with the 
largest error at 34.08% in segment No. 22. Overall, the 
Bayesian network-based model predicts pipeline corrosion 
with good accuracy. 

V. CONCLUSION 

Bacterial analysis revealed three types of bacteria—SRB, 
IOB, and TGB—in both A# and B# pipelines. SRB, being 
anaerobic, was the most abundant and likely the main cause 
of microbial corrosion, while IOB and TGB, aerobic bacteria, 
create an oxygen-deprived environment that supports SRB 
growth. Thus, microbial corrosion is primarily driven by 
SRB. 

A Bayesian network causality diagram was developed 
using GeNIe software, combining expert knowledge, 
historical data, and corrosion factors identified through 
orthogonal experiments. The model used GMM and input 
parameters to generate conditional probability tables, 
creating uniform and pitting corrosion failure probability 
models for the pipelines. 

Corrosion failure probabilities were predicted for 23 pipe 
sections of A# and B# pipelines. Comparing with field data, 6 
segments in A# had errors below 20%, 5 segments had errors 
between 20% and 30%, with the largest error (32.15%) in 
segment No. 3. For B#, 8 segments had errors below 20%, 4 
segments had errors between 20% and 30%, and the largest 
error (34.08%) was in segment No. 22. Despite some larger 
errors, the overall accuracy supports the Bayesian network 
model’s effectiveness in predicting pipeline corrosion failure. 
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