
  

 

Abstract—The equilibrium reactive extraction of glycolic acid 

(GA) from aqueous solution is studied using tri-n-octylamine 

(TOA) as extractant dissolved in organic solvents (cyclohexane 

and 1-decanol). Experimental studies are designed using central 

composite orthogonal design method to investigate the main and 

interaction effects of initial GA concentration in the aqueous 

phase (Cin, mol/L), initial TOA composition in the organic phase 

(CTOA,o, %v/v) and modifier composition (M, %v/v) on the degree 

of extraction (Y). The process design parameters are optimized 

based on Y and using bio-inspired optimization algorithm, called 

differential evolution (DE). A quadratic response surface model 

is satisfactorily described with R2 of 0.98. The optimum 

conditions using DE are obtained as Cin = 0.24 mol/L, CTOA,o = 

16.1 (%v/v), and M = 80.38 (%v/v). At this optimum conditions, 

a Y of 73.18% can be obtained from the model. Experimental 

verification gives a Y of 69.25% with a model error of 5.7%. 

This indicates high reliability of the model. 

 
Index Terms—Reactive extraction, glycolic acid, modeling, 

optimization.  

 

I. INTRODUCTION 

Glycolic acid (GA) has a broad spectrum of consumer and 

industrial applications. It is used in leather, oil, gas, laundry,  

textile industries and as a component in personal care 

products like skin care creams. Commercially, GA is 

produced from petroleum feed-stocks. The chemical industry 

has come under increasing pressure to make chemical 

production more eco-friendly due to its reliance on fossil 

resources, its environmentally damaging production 

processes and its toxic byproducts and waste. Within this 

framework, bio-based chemistry and biotechnologies offer 

great prospects. Therefore, it is essential to replace the 

petroleum based feed-stocks by renewable resources for the 

sustainable development of industry. Glycolic acid can be 

produced by the enzymatic conversion of glycolonitrile by 

nitrilase as an aqueous solution of ammonium glycolate [1].  

Classical extractants (aliphatics, aromatics, ketones, 

alcohols etc.) have almost no ability to extract carboxylic 

acids from their aqueous solutions because of their low 

distribution coefficients (lower than 1) [2], [3]. Also 

hydrophilic nature of glycolic acid (logP = -1.097, where P is 

the distribution coefficient of solvent in a standard 1-octanol 

and water two-phase system, [4]) and low concentration 

found in the fermentation broth, makes it poorly extractable 

by common organic solvents. For an affordable recovery 

process comparatively a high distribution coefficient is a 
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must. Reactive extraction with an extractant 

(organophosphoric and aminic extractants) has been gaining 

great attention to solve this problem [5]-[8]. In the reactive 

extraction, a reaction occurs between the extractant and the 

solute (acid) and forms an acid-extractant complex. This 

complex is solubilized into the organic phase using suitable 

extractant-diluent system, and then the acid is back-extracted 

from the organic phase [2]. The extractant is generally diluted 

with an organic (conventional) solvent to get appropriate 

physical properties such as viscosity, density, surface tension 

etc. of the organic phase [9]. 

Several studies on the reactive extraction of glycolic acid 

with different extractants (phosphoric and aminic) dissolved 

in several diluents (alkanes, ketones, alcohols etc.) are carried 

out to determine the effect of various parameters such as 

initial acid concentration, initial extractant concentration, 

type of extractant, effect of diluents, effect of temperature on 

the recovery of this acid [5, 10-13]. To maximize the recovery 

of glycolic acid from aqueous solution, the effective choice 

and optimum combinations of these design variables are 

essential. In this sense, response surface methodology (RSM) 

is a powerful mathematical method suitable for modeling and 

simulation of various processes in real applications [14]-[16]. 

RSM model approximates the functional relationships 

between input (design) variables and output variable 

(response) of the process using experimental data and 

regression analysis. The developed model can then be used to 

estimate the optimum process variables (parameters) to 

maximize or minimize the response [17]. 

Most of the traditional optimization algorithms based on 

gradient methods have the possibility of getting trapped at 

local optimum depending upon the degree of non-linearity 

and initial guess [18]. The non-traditional optimization 

techniques based on evolutionary computation and natural 

phenomenon such as genetic algorithm (GA), differential 

evolution (DE), etc. have been developed to overcome the 

above said problems and to obtain more suitable and exact  

optimum solution of the process [6, 18]. 

In this paper, the equilibrium experimental data for reactive 

extraction of glycolic acid are designed using central 

composite orthogonal design method and these data are 

modeled using response surface methodology. The critical 

and effective independent parameters (design variables) for 

the recovery of glycolic acid using reactive extraction are 

chosen as initial GA concentration in the aqueous phase (Cin, 

mol/L), initial TOA composition in the organic phase (CTOA,o, 

%v/v) and modifier composition (M, %v/v) and the degree of 

extraction (Y) as the response. The process design parameters 

are optimized based on Y and using bio-inspired optimization 

algorithm, called differential evolution (DE). 
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II. EXPERIMENTAL SECTION 

A. Materials 

Glycolic acid of purity 99.5 %w/w is purchased from 

Spectrochem, India. Tri-n-octylamine (density = 809 kg/m
3
; 

purity = 98 %w/w; molar mass 353.68 kg/kmol) procured 

from Spectrochem, India, is used as an extractant in this study. 

Diluents such as cyclohexane (density = 779 kg/m
3
; purity = 

99 %w/w; S. D. Fine-Chem, India) as an inert diluent and 

1-decanol (density = 830 kg/m
3
; purity = 98 %w/w; 

Spectrochem Pvt. Ltd., India) as a modifier are used to 

prepare the organic solution. Sodium hydroxide (Merck, 

Germany) is used for titration and phenolphthalein solution 

(CDH, India; pH range of 8.2 to 10.0) is used as an indicator 

in the titration.  

B. Method 

The equilibrium extraction experiments are carried out in a 

temperature controlled reciprocating water shaker bath 

(REMI Labs, HS 250, India) using conical flasks of 100 ml 

with equal volumes of aqueous and organic phase (20 ml). 

The phase mixture is then shaken at 100 rpm for 6 hrs at 298 

K. After reaching equilibrium, aqueous and organic phases is 

kept for 2 hrs for separation in separating funnel (125 ml) at 

constant temperature (298 K). The concentration of the 

residual glycolic acid in the aqueous phase is determined by 

titration with NaOH solution of 0.05 N
 
and phenolphthalein as 

an indicator. The acid concentration in the organic phase at 

equilibrium is calculated by mass balance. The repeatability 

for few data points is checked and found within ± 5% of error. 

The efficiency of the equilibrium reactive extraction 

process is analyzed by calculating the degree of extraction (Y) 

which is defined as a ratio of acid concentration in the organic 

phase at equilibrium (C ) to initial acid concentration in the 

aqueous phase (Cin). 

100
in


C

C
Y          (1) 

 

III. RESULTS AND DISCUSSION 

A. Reactive Extraction 

The equilibrium reactive extraction mechanism can be 

described as a set of reactions between m molecules of acid 

(HA), and n molecules of extractant (T) to form various (m:n) 

acid-extractant complexes and is represented as: 

   
nmnm THATHA         (2) 

where,
nm )T()HA(  is the formed acid-extractant complex 

in the organic phase at equilibrium. Depending on the molar 

ratios between the reactants (glycolic acid and TOA), 

different types of chemical interactions are possible [7]. The 

use of inert diluent (e.g. cyclohexane) in the case of high 

initial glycolic acid concentration in the aqueous solutions, 

may lead to the formation of a stable emulsion at the interface 

of aqueous and organic phases. Therefore, to avoid emulsion 

formation, a phase modifier (e.g. 1-decanol) is added to the 

organic solvent which also assures a higher solubility of 

formed acid-extractant complex in the organic phase by 

solvation. 

B. Response Surface Methodology Approach and 

Experimental Design 

The development of an industrial process requires study of 

the various process parameters, which can be achieved by 

exhaustive experimentation. The experiments are carried out 

by varying numerous experimental units to evaluate the 

performance of the system in terms of single/many output 

variable (s). It also requires comprehensive observation and 

gathering of information about the process and the system. 

These experimental data are useful to draw many valuable 

results and inferences about the system and the process. 

Therefore, in order to obtain already set objective conclusion, 

an experimenter needs to plan and design the experiments, 

and analyze the results. The approximation of the response 

function in terms of input variables is called Response Surface 

Methodology (RSM). RSM is a mathematical and a statistical 

technique that is applied for the construction of empirical 

models based on experimental data and experimental design 

[19, 20]. 

In RSM modeling the input variables are normalized or 

scaled to coded levels which usually vary from a minimum 

level (−α) up to a maximum level (+α). Generally, in the case 

of insufficient knowledge of the true response surface, a 

first-order model is helpful to approximate the shape of the 

response. When the first order model is unable to describe the 

behavior of the response function, it is then upgraded to a 

second order model [21]-[23]. An expression describing a 

second order RSM model can be written as:  
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where Y denotes the predicted response; xi refers to the input 

design variables in terms of coded levels; Ao, Ai, Aii, Aij are the 

regression coefficients; and k is the total number of factors in 

the experimental design. The regression coefficients are 

determined using ordinary least squares (OLS) method. OLS 

estimator can be written as follows [24]: 

YXXXA TT 1

OLS )(         (4) 

where AOLS is a vector of regression coefficients; X is an 

extended designed matrix of the coded levels of the input 

variables; and Y is a column vector of responses determined 

experimentally. 

The actual values of design variables (Cin, CTOA,o and M) 

are coded as xi (dimensionless) and presented in Table I. The 

coding of the design parameters is done according to the 

following equations: 

 
TABLE I: INDEPENDENT VARIABLES (THEIR CODED AND ACTUAL VALUES) 

Design variables Coded variables 
Coded levels 

-α -1 0 1 +α* 

Cin (mol/L) x1 0.24 0.3 0.6 0.9 0.96 

CTOA,o (%v/v) x2 3.93 5 10 15 16.1 

M (%v/v) x3 19.63 25 50 75 80.38 

*α = 1.215 (star point for CCOD) for k = 3 

3.0

6.0in
1




C
x            (5) 
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In the present study, the experiments are designed 

considering (i) 2
k
 factorial CCOD points; (ii) nc central points 

(coded as zero value); (iii) two axial points from the central 

design point at a distance of ±α; and (iv) 2k star points. Hence, 

the total number of experimental design points becomes as, n 

= 2
k 
+ 2k + nc. Therefore, with k = 3, nc = 1 (two replicates at 

the center point) and α = ±1.215 [23] for CCOD, a total of 16 

batch experiments are carried out. Each experimental run 

represents a unique combination of factor’s level. The degree 

of extraction (Y) is determined for each experimental run 

using Eq. 1 and the values are shown in Table II.  

 
TABLE II: EXPERIMENTAL DESIGN POINTS AND RESPONSE 

Run 

No. 

Run 

type 

Coded variables Response 

(Y) 

  Cin x1 CTOA,

o 

x2 M x3  

1 O1 0.9 1 15 1 75 1 31.63 

2 O2 0.3 -1 15 1 75 1 66.38 

3 O3 0.9 1 5 -1 75 1 15.10 

4 O4 0.3 -1 5 -1 75 1 31.07 

5 O5 0.9 1 15 1 25 -1 18.18 

6 O6 0.3 -1 15 1 25 -1 25.19 

7 O7 0.9 1 5 -1 25 -1 7.54 

8 O8 0.3 -1 5 -1 25 -1 10.90 

9 S1 0.96 α 10 0 50 0 20.41 

10 S2 0.24 -α 10 0 50 0 34.85 

11 S3 0.6 0 16.1 α 50 0 42.00 

12 S4 0.6 0 3.93 -α 50 0 15.10 

13 S5 0.6 0 10 0 80.38 α 32.75 

14 S6 0.6 0 10 0 19.63 -α 11.74 

15 C1 0.6 0 10 0 50 0 29.39 

16 C2 0.6 0 10 0 50 0 25.19 

 

O = orthogonal design points, C = center points, S = star 

points, −1 = low value, 0 = center value, +1 = high value, +/− 

α = star point value 

These experimental data (Table II) are regressed to obtain 

regression coefficient of the RSM model. The significance of 

each regression coefficient is determined by Student’s t-test (a 

null hypothesis test) and Fischer distribution test (F-test). 

Only the significant contribution of each design variable on 

the response function is considered and approximate RSM 

model equation of second order polynomial describing Y of 

reactive extraction as a function of coded design variables is 

represented as: 

3231
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21

364.3044.5

804.2894.2851.9

993.918.7069.28

xxxx

xxxx
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   (8) 

Subjected to:   ix  and 1000  Y  (9) 

Statistical significance of the regression equation (Eq. 8) is 

analyzed using analysis of variance (ANOVA) and results are 

summarized in Table III. ANOVA compares the variation of 

regression data (the residual) about the mean. Such kind of 

comparison of variations is very much useful to evaluate the 

significance of the regression analysis and to predict the 

exactness of the response function. The significance of 

regression can be evaluated using F-test (Fischer's test) value 

and P-value (null-hypothesis test). The F-value predicts the 

quality of the entire model considering all design variables at 

a time. The P-value is the probability of the independent 

design variable having very little or insignificant effect on the 

dependent variable (response). Larger F-value signifies better 

fit of the RSM model to the experimental data. The quality of 

the overall model can be improved by increasing F-value 

which can be achieved by eliminating some terms and/or 

independent variables in the RSM model with a low t-test 

value. The P-value is used to interpret the values obtained by 

t-test. P-value less than 0.05 means that the design variable 

(factor), when considered in the model equation, will 

contribute less than 5% change in the dependent variable. If 

the P-value is greater than 0.05, a strong argument can be put 

up to eliminate a particular independent variable from the 

RSM model. The values of degrees of freedom (DF), sum of 

squares (SS), mean square (MS) for the model and residuals, 

F-value, P-value,  and coefficient of determination (R
2
) are 

determined by ANOVA and presented in Table III. ANOVA 

analysis as given in Table III shows that a larger F-value 

(greater than unity) and P-value near about zero are obtained 

for Eq. 8. The value of R
2 

(= 0.98) indicates that the RSM 

regression model is found to be very significant and explains 

about 98% of the experimental data with the model predicted 

data (Fig. 1). 
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Y
p
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d
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%
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Y
exp

 (%)

R 
2
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Fig. 1. RSM model predicted versus experimental degree of extraction. 

 

TABLE III: ANALYSIS OF VARIANCE (ANOVA) FOR RSM MODEL 

Source DF SS MS F-value P-value R2 

Regression 7 3118.98 445.57 55.97 3.61x10-6 0.98 

Residual 8 63.68 7.96    

Total 15 3182.66     

 

The effects of design variables (Cin, CTOA,o, and M) on Y are 

determined by plotting response surface plots on 2-D planes 

and shown in Figs. 2-4. Effect of Cin on Y at various CTOA,o and 

at fixed modifier composition (M = 50 %v/v) is shown in Fig. 

2. This figure also indicates the effect of interaction between 

both variables (Cin and CTOA,o). As indicated by the Fig. 2, an 

increase in the acid concentration decreases Y for a fixed 

amount of TOA composition. At higher acid concentration the 

competency between acid molecules to attach with the 

extractant molecules becomes more and hence less amount of 

acid molecule can be extracted by the amine molecule 

decreasing Y. At higher amine composition there are 
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sufficient amount of amine molecules available for a 

particular acid concentration and hence a greater value of Y.  
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Fig. 2. Effect of Cin and CTOA,o on Y (%) at M = 50 %v/v. 

 

Fig. 3 elaborates the variation of degree of extraction as a 

function of Cin at different M values and at CTOA,o = 10 %v/v. 

Since TOA has a relatively high viscosity and density, it is 

used along with diluents, which could facilitate good phase 

separation in the continuous extraction process. Diluents 

chosen in the study are cyclohexane from the inactive 

chemical class, and 1-decanol as modifier from active 

chemical class to examine the effect of diluent-complex 

interactions. These interactions generally have been found to 

affect the stoichiometry of reaction and magnitude of the 

corresponding equilibrium constants.  
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Fig. 3. Effect of Cin and M on Y (%) at  CTOA,o  = 10 %v/v. 

 

From the Fig. 3 it can then be observed that the solubility of 

extracted species increases in the organic phase. So, Y of GA 

increases with an increase in the concentration of 1-decanol 

(modifier) in the mixture of TOA and cyclohexane.  

The significant effect of M on Y (response) with CTOA,o is 

shown in Fig. 4 at Cin = 0.6 mol/L. In this study 1-decanol has 

been used as a modifier which is an active polar solvent 

(dipole moment, μ = 2.62 D). Use of non-polar solvents (e.g. 

cyclohexane, μ = 0 D) at higher initial concentration of 

glycolic acid in aqueous solutions, could lead to the formation 

of a stable emulsion and dimer in the organic phase. 

Therefore, a modifier is generally added to the organic phase 

to avoid such kind of problems and assures a higher solubility 

of the formed acid-amine complex in the organic phase. 

Active diluent, 1-decanol is having an active group (–OH, 

proton donor), which enhance the extractability of low polar 

TOA. On the other hand, non-polar diluents do not affect the 

extraction process significantly. Fig. 4 dictates that with 

increase in both values of M and CTOA,o, Y increases. 
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Fig. 4. Effect of CTOA,o and M on Y (%) at Cin = 0.6 mol/L. 

 

C. Optimization using Differential Evolution 

In science and engineering, optimization is defined as the 

method of minimizing or maximizing an objective function 

comprised of different independent variables and finding the 

values of those variables for which the objective function 

takes on minimum or maximum value within the defined 

domains of variables.  
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Fig. 5. Effect of various factors on the degree of extraction. 

 

Fig. 5 describes the effect of one of the parameters as coded 

variable on Y. It can be seen that with the increase in the 

values of x1, there is a decrease in the Y, but with the increase 

in the values of x2 and x3, the Y increases. It means there is a 

trade-off or balance between the values of xi’s which will 

optimize (maximize in this case) the response function. 

During the last two decades there has been a growing interest 

in optimization algorithms, which are based on the principle 

of evolution (survival of the fittest). The best-known 

algorithms in this class include Genetic Algorithm (GA), 

Differential Evolution (DE), Evolutionary Programming, 

Evolution Strategies and Genetic Programming. A brief 

review of the evolutionary computation techniques is 

presented by Babu, 2004 [18]. DE is a generic name for a 

group of algorithms that are based on the principles of GA, 

but have some inherent advantages over GA. DE algorithms 

are very robust and efficient and are able to find the global 

optimum of a function with ease and accuracy. DE algorithms 

are faster than GA. GA evaluates the fitness of a point in the 

search for optimum. In other words, GA evaluates a vector’s 

suitability. In DE, this vector’s suitability is called its cost or 

profit depending on whether the problem is a minimization or 

maximization. In GA only integers are used and coding is 

done in binary format while in DE, there is no coding involved 

and floating point numbers are directly used. In GA, when 

144

International Journal of Chemical Engineering and Applications, Vol. 3, No. 2, April 2012



  

mutation is performed, bits are flipped at random with some 

mutation probability. This is essentially an XOR operation. In 

DE, direct addition is used. As already stated, DE in principle 

is similar to GA. So, as in GA, a population of points is used in 

the search for optimum. The population size in DE is denoted 

by NP. The dimension of vector (parameter) is denoted by D. 

NP number of competitions is to be carried out to decide the 

next generation. To start the DE, there is a population of NP 

vectors within the range of the vectors and one of these NP 

vectors is selected as the target vector. After that, two more 

vectors from the population are randomly selected and the 

difference between them (vector subtraction) is found out. 

This difference is multiplied by a factor F (specified at the 

start) and added to a third randomly selected vector from the 

population. The resultant vector is called the noisy random 

vector. Subsequently, crossover is performed between the 

target vector and the noisy random vector considering a 

crossover ratio (CR) between 0 and 1, to produce the trial 

vector. Then, a competition between the trial vector and the 

target vector is performed and the winner is replaced into the 

population. The same procedure is carried out NP times to 

decide the next generation of vectors. This sequence is 

continued till some convergence criterion is met. However, 

certain guidelines and heuristics are available for the choice 

of these parameters. NP should be 5-10 times the value of D 

(dimension of the problem). Initially, F = 0.5 is 

recommended. If this leads to premature convergence, then F 

needs to be increased. The range of F is 0-1.2 but the optimal 

range is 0.4-1.0. Values of F < 0.4 and F > 1.0 are seldom 

effective. CR = 0.9 is a good first guess. CR = 0.9 is to be tried 

first and then CR = 0.1 to be tried. Judging the speed, a value 

of CR between 0-1 is to be chosen. Based on these heuristics, 

the values of DE key parameters for the present problem are 

set as population size (NP) = 30, cross-over frequency (CR) = 

0.7; multiplication factor (F) = 0.8. The fitness function, 

which is to be minimized, is considered as: 







Nj

j

pred

jj YYMSE
1

2exp )(     (10) 

where MSE is mean-squared error and N is the number of 

experiments. 

For the optimization of RSM fitness function a computer 

code has been developed in MATLAB (v 7.0.1). DE has 

converged to the optimal value only after 3 generations. 

Therefore, it can be said that DE is comparatively faster than 

other optimization techniques [24]. The optimal solution 

obtained by means of RSM-DE involves the following 

conditions: Cin = 0.24 mol/L, CTOA,o = 16.1 %v/v, and M = 

80.38 %v/v with predicted Y is about 72.18% by RSM model 

and about 69.25% from experiment. This value is greater than 

the value of 66.38% that is obtained for the run number 2 from 

initial experimental design (Table II). Therefore, the scope of 

optimization has been achieved by RSM-DE for this process. 

 

IV. CONCLUSION 

In this work, RSM and DE methods are applied for 

modeling and optimization of equilibrium reactive extraction 

process of glycolic acid considering three design variables 

(Cin, CTOA,o and M). The reactive extraction of glycolic acid 

from aqueous solutions with TOA (amine) dissolved in 

organic solvents (cyclohexane and 1-decanol) has been 

considered as the case study. The regression equation in 

coded variables has been constructed by RSM to describe the 

empirical functional relationships between input variables 

(factors) and response (degree of extraction) with R
2 

for 

empirical model equal to 0.98. The optimum conditions are 

found to be: Cin = 0.24 mol/L, CTOA,o = 16.1 %v/v, and M = 

80.38 %v/v with Y of 72.18 % and 69.25 % by the RSM 

model and by experiment, respectively. These results and 

findings can be used to design and optimize the recovery 

process of glycolic acid from aqueous solution using reactive 

extraction.  
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