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Abstract—The development of shale reservoirs has interpreted 

as a milestone in the energy equation. This issue led to organic-

rich oil-producing mudrocks to be studied extensively during the 

last decade. Shale reservoirs properties such as pore size, organic 

matter, wettability, clay content and mineralogy would limit the 

application of the conventional methods for characterizing such 

reservoirs.

 

Nuclear Magnetic Resonance (NMR) relaxation method is a 

crucial technique for evaluating shales rocks, both core and log 

scale. Utilizing NMR tool to measure relaxation times (ranging 

from 0.1–1 ms) provides a way to understand small pore sizes 

(nano-meter scale) and also to investigate different proton 

populations using 2D T1–T2 maps. 

We took some samples from upper and lower Bakken 

formation with different maturity levels. Then, the position of 

each proton population such as hydroxyls from the clay, water, 

kerogen, and hydrocarbon was detected in samples. Results 

showed, in a T1–T2 map, the position of these signatures do not 

overlap and also shows the movability of each portion as well.  

 

Index Terms—Nuclear Magnetic Resonance (NMR), shale 

reservoirs, proton populations, T1-T2 map. 

 

I. INTRODUCTION 

The fully characterization of gas shales still remained a 

challenge, since it cannot be performed by means of 

conventional petrophysical techniques, and new techniques 

are required for characterizing shale reservoirs. Even for 

porosity and permeability as basic properties, special 

methodologies are required. Standard measurement of pore 

sizes as well as advanced microscopic techniques such as 

SEM have shown the existence of very small pores [1]-[4]. 

NMR is a versatile technique used previously to study 

soluble and insoluble hydrocarbon mixtures, such as kerogen 

[5]-[9], bitumen [10], [11], petroleum [12], [13], and 

asphaltenes [13]-[15]. Reference [16] used the T1/T2 ratio to 

differentiate between moveable and non-moveable fluids in 

both conventional and unconventional reservoirs. In Smectites 

having sheet-like pores, NMR instrument can detect and 

quantify the interlayer water content [3]. 

It should be noted, simple 1D NMR are not sufficient due to 

complex porous media [17]. There is also a potential 
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overlapping of the signals of different Hydrogen (H) 

populations. Multidimensional NMR techniques improve the 

separation of the different proton contributions [8]-[18]. In 

this study, T1–T2 map was used in conjunction with 

geochemical data to characterize hydrogen content in pore 

spaces of two samples from upper and lower Bakken. The 

hydrogen population were distinguished straightforward in 2D 

T1-T2 map. Interestingly, presence of hydrocarbon which was 

detected in NMR in one of the wells in this study, was also 

seen in UV image. 

 

II. DATA AND SAMPLES 

For this study, samples were chosen from the upper and 

lower members of the Bakken Formation and analyzed with 

Rock-Eval and also NMR. The Bakken Formation is an 

organic rich shale, mudstone and sandstone that was deposited 

during the Late Devonian and Early Mississippian Periods 

[19]. It is located in the Williston Basin, which is an elliptical 

shaped depression located in the western portion of North 

Dakota, northeastern region of Montana and extends into parts 

of Saskatchewan and Manitoba [20]. The lower and upper 

members contain Type-I and Type-II organic matter that 

originated from marine algae. The total organic carbon (TOC) 

has a maximum of 30% and 20% in the upper and lower 

members, respectively [21]. 

 

 
(a) 

 
(b) 

Fig. 1. Photo of raw samples for Well No. 1 (a) and Well No. 2 (b). 
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Fig. 1 shows raw sample chips used for this study, Table I 

also presents sample properties from Rock-Eval. No special 

sample preparation but routine was carried out. 
 

TABLE I: PROPERTIES OF SAMPLES USED IN THIS STUDY FROM UPPER 

BAKKEN (U.B) AND LOWER BAKKEN (L.B) 

Well 

No. 

Sample depth 

(ft) 
TOC (wt%) Ro (%) Tmax (˚C) 

1 8326 (U.B) 16.27 0.54 428 

2 10555 (L.B) 13.26 0.86 449 

 

III. NMR MEASUREMENT 

Organic-rich oil-producing mudrocks has become a major 

exploration target, thus understanding pore network of such 

fine grained rocks is crucial for optimizing and designing 

expenses of production. NMR relaxation methods are 

considered as key techniques for evaluating oil-producing 

mudrocks, from both cores and logging data. Fig. 2 shows 

pore system in a shale rock from [2]. Recently, NMR is being 

widespread for characterizing of shale oil and shale gas 

reservoirs by showing producible zones in log scale and pore 

size distribution in core scale.  T1 and T2 are longitudinal and 

transverse relaxtion times of H nuclei in rock which can be 

measured and used for fluid typing and pore size [16]-[22]. It 

can also help in finding the contribution of Bitumen, Kerogen, 

Bound water, moveable water and hydrocarbon by 2D T1-T2 

map or using ratios of T1/T2. 

 

 
Fig. 2. Pore system in a shale rock sample from [2]. 

 

High Frequency NMR measures all hydrogen present in 

water, oil and solid organics. T1 and T2 relaxation times are 

physical properties of a sample and are related to mobility of 

molecules, so they can be used to differentiate liquids from 

solid, and also talk about mobilty. If T1 and T2 will be 

measured simultaneously, T1-T2 map will be resulted which 

provid hydrogen intensity map. The different Hydrogen 

contents in the T1–T2 map can be associated with the origins 

stated in Table II. 

We used a modified CPMG (Carr-Purcell Meiboom-Gill) 

sequence in which inter-echo time increased gradually up to 

100 μs or more to catch very short and very long relaxation 

times [23]. 2D T1-T2 maps were then determined using an 

inversion recovery sequence. Fig. 3 shows T1-T2 map for two 

samples in this study from Bakken Formation. As it can be 

seen, the map is a very efficient way to separate the 

contributions from the different compartments containing 

hydrogen molecules. 

 
TABLE II: ORIGIN OF DIFFERENT HYDROGEN CONTENT IN NMR 

Hydrogen content Origin 

Hydroxyls 

OH part of the clay structure or at the edges of 

clay platelets; it is always below 0.1 ms, and 

needs appropriate NMR instruments 

kerogen 

Based on the maturity, it can overlap with 

hydroxyls. It is best detected in dry samples since 

their hydrogen index is quite low compared to 

water 

Water It is located close to the line T1/T2 ∼2 

Methane It can easily be separated on T1/T2∼10 

 

 
(a) 

 
(b) 

Fig. 3. T1-T2 map for: (a) Well No. 1 Upper Bakken, (b) Well No. 2 Lower 

Bakken. Hydrogen fraction for different regions are also shown. 

 

IV. RESULTS AND DISCUSSION 

Analyzing the core samples from which the organic matter 
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was isolated showed hydroxyls from the clay are characterized 

with 0.01<T2<0.1 ms and 10<T1/T2<100 and/or spread over 

a wide T1 range, as region 3 in Well No. 2. Kerogen showed 

itself with 10<T1/T2<100, as in Region 2 and 3 in Well No. 1. 

It should be noted, in the gas window, organic matter cannot 

be distinguished, due to low maturity which leads to 

overlapping of Kerogen signal with the hydroxyl signal. 

Methane showed itself with T1/T2∼10, as in Region 4 and 2 

in Well No. 1 and Well No. 2, respectively. By changing pore 

size, it moves towards higher T1 and T2 values, as in Region 

2 in Well No. 2. Water showed itself with T1/T2∼2, as in 

Region 1 in both Well No. 1 and Well No. 2. Moreover, the 

T1 axis can roughly represents the proton rotational mobility 

[3]-[24]. The mobility is small for large T1/T2 ratios, whereas 

for solid protons, it corresponds to reduced molecular mobility. 

Low viscosity fluids have T1/T2=1 (like water), but high 

viscosity fluids have T1/T2 >100 (like Bitumen). 

Reference [3] and [24] proposed typical T1-T2 map, which 

distinguishes between different hydrogen content based on 

their location in T1-T2 map, Fig. 4.  

Interestingly, Photomicrographs of Well No. 2 under UV 

light (fluorescence) showed presence of HC, Fig. 5. 

 

 
 

Fig. 4. T1-T2 map proposed by [3] to find each hydrogen content based on 

location. 

 

 
(a) 

 
(b) 

Fig. 5. (a) Low-reflecting bitumen (L-Bit) for Well No. 2 (b) the same view as 

in (a) but under UV light. Note the dull-yellow fluorescence color of the 

generated hydrocarbon (HC) filling the cavities. P is also showing Pyrite. 

 

V. CONCLUSION 

In this study, we had two samples from upper and lower 

Bakken formations. We used NMR T1-T2 map to distinguish 

between different Hydrogen contents in unconventional shale 

reservoirs as hydroxyls from the clay structure, kerogen, water 

and methane, since signals are not overlaping.  

Estimation of the fluid properties in shales is challenging, 

and even using advance methods such as NMR needs more 

experimental work to develop a reliable correlations. This 

issue would be better performed by understanding the shale 

system fully. NMR method, might be a benefical tool to help 

us in this way. 
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